16,913 research outputs found

    Spin-dependent Fano resonance induced by conducting chiral helimagnet contained in a quasi-one-dimensional electron waveguide

    Full text link
    Fano resonance appears for conduction through an electron waveguide containing donor impurities. In this work, we consider the thin-film conducting chiral helimagnet (CCH) as the donor impurity in a one-dimensional waveguide model. Due to the spin spiral coupling, interference between the direct and intersubband transmission channels gives rise to spin-dependent Fano resonance effect. The spin-dependent Fano resonance is sensitively dependent on the helicity of the spiral. By tuning the CCH potential well depth and the incident energy, this provides a potential way to detect the spin structure in the CCH.Comment: 14 pages, 6 figure

    Van der Waals spin valves

    Get PDF
    We propose spin valves where a 2D non-magnetic conductor is intercalated between two ferromagnetic insulating layers. In this setup, the relative orientation of the magnetizations of the insulating layers can have a strong impact on the in-plane conductivity of the 2D conductor. We first show this for a graphene bilayer, described with a tight-binding model, placed between two ferromagnetic insulators. In the anti-parallel configuration, a band gap opens at the Dirac point, whereas in the parallel configuration, the graphene bilayer remains conducting. We then compute the electronic structure of graphene bilayer placed between two monolayers of the ferromagnetic insulator CrI3_3, using density functional theory. Consistent with the model, we find that a gap opens at the Dirac point only in the antiparallel configuration.Comment: 5 pages, 4 figure

    The holographic RG flow in a field theory on a curved background

    Get PDF
    As shown by Freedman, Gubser, Pilch and Warner, the RG flow in N=4{\cal N}=4 super-Yang-Mills theory broken to an N=1{\cal N}=1 theory by the addition of a mass term can be described in terms of a supersymmetric domain wall solution in five-dimensional N=8{\cal N}=8 gauged supergravity. The FGPW flow is an example of a holographic RG flow in a field theory on a flat background. Here we put the field theory studied by Freedman, Gubser, Pilch and Warner on a curved AdS4AdS_4 background, and we construct the supersymmetric domain wall solution which describes the RG flow in this field theory. This solution is a curved (non Ricci flat) domain wall solution. This example demonstrates that holographic RG flows in supersymmetric field theories on a curved AdS4AdS_4 background can be described in terms of curved supersymmetric domain wall solutions.Comment: 14 pages, LaTe

    Gravitational Larmor formula in higher dimensions

    Get PDF
    The Larmor formula for scalar and gravitational radiation from a pointlike particle is derived in any even higher-dimensional flat spacetime. General expressions for the field in the wave zone and the energy flux are obtained in closed form. The explicit results in four and six dimensions are used to illustrate the effect of extra dimensions on linear and uniform circular motion. Prospects for detection of bulk gravitational radiation are briefly discussed.Comment: 5 pages, no figure

    Partition functions and elliptic genera from supergravity

    Full text link
    We develop the spacetime aspects of the computation of partition functions for string/M-theory on AdS(3) xM. Subleading corrections to the semi-classical result are included systematically, laying the groundwork for comparison with CFT partition functions via the AdS(3)/CFT(2) correspondence. This leads to a better understanding of the "Farey tail" expansion of Dijkgraaf et. al. from the point of view of bulk physics. Besides clarifying various issues, we also extend the analysis to the N=2 setting with higher derivative effects included.Comment: 34 page

    On Quantum Special Kaehler Geometry

    Full text link
    We compute the effective black hole potential V of the most general N=2, d=4 (local) special Kaehler geometry with quantum perturbative corrections, consistent with axion-shift Peccei-Quinn symmetry and with cubic leading order behavior. We determine the charge configurations supporting axion-free attractors, and explain the differences among various configurations in relations to the presence of ``flat'' directions of V at its critical points. Furthermore, we elucidate the role of the sectional curvature at the non-supersymmetric critical points of V, and compute the Riemann tensor (and related quantities), as well as the so-called E-tensor. The latter expresses the non-symmetricity of the considered quantum perturbative special Kaehler geometry.Comment: 1+43 pages; v2: typo corrected in the curvature of Jordan symmetric sequence at page 2
    • …
    corecore