13 research outputs found

    Faire progresser les biotechnologies environnementales par le biais d'approches d'écologie moléculaire: de la description à la gestion

    No full text
    Renewable energies play a crucial role in the limitation of the CO2 emissions. Among them, anaerobic digestion allows the reduction of organic waste volume and the production of biogas, a sustainable energy. However the vulnerability of the anaerobic microbiome to the modification of operational parameters can lead to process failure and economic losses. Increasing the knowledges about the anaerobic microbiome as a whole and its impact on the digester performances would provide the keys to limit the risk of process failure. Thanks to the development of the high throughput methodologies, the understanding of the microbiome dynamics, interactions and functioning has improved.The aim of this thesis work was to characterise the microbiome functioning under different operating conditions and how it relates to the digester performances. To do so multiple high-throughput molecular technologies, especially 16S rRNA metabarcoding and metabolomics analyses, coupled to computational biostatistics were used.Influence of the feedstock composition was the first parameter studied. Digesters were fed with different mixtures of substrates. The results showed that the substrate composition played a significant role on the microbial diversity and specificity which could explain the different digester performances observed between the batch reactors. An integrative analytical framework was specifically used to link the microbial activity to the substrates degradation. It allowed to identify potential degraders of specific molecules. The capacity of the microorganisms to adapt to an modification of the feedstock composition was also evaluated in semi-continuous reactors.In a second time, the influence of ammonia accumulation on the microbial dynamics was evaluated. In semi-continuous reactors ammonia was added at different speeds. The results showed that the faster the speed of accumulation was, the more the digester performances were impacted. A longitudinal analysis was performed by carrying out a temporal sampling. This analysis allowed to evaluate the adaptation capacity of the microbes when subjected to different conditions of ammonia addition. Moreover microorganisms specific to the ammonia accumulation were identified and could be used as potential bio-indicators to forecast digester inhibition.Finally the influence of the zeolite on the microbial interactions was studied. Zeolite is a mineral support allowing to counteract ammonia inhibition. However, the mechanisms behind this mitigation capacity remain unclear. In order to unravel them, different physical treatments were applied on the zeolite before it was added into digesters containing ammonia. In general in absence of ammonia, the zeolite did not influence the microbial composition and the digester performances, while a significant effect was observed in presence of ammonia. A discriminant analysis coupled to a sparse method allowed to highlight the impact of the zeolite on the microbial syntrophy needed for the propionate degradation. Additional data from the literature were included in order to evaluate the genericity of the results.The results from this thesis work highlight the importance of the operational parameters, even at a small-scale, on the microbial activity. Innovative statistical frameworks for the analysis of the microbiome were proposed to go further on the microbiome description. For example, key phylotypes specifically sensitive to inhibition were identified. Some of them could be used as bio-indicators to control digester functioning. Moreover, this work highlights the value of developing the metabolomic analysis in the bioprocess fields, as it enables to monitor organic matter degradation and infer the potential role of the microorganisms in the degradation process.L’utilisation des Ă©nergies renouvelables joue un rĂŽle crucial dans la rĂ©duction des Ă©missions de gaz Ă  effet de serre. Dans ce contexte de prĂ©servation de l’environnement, la digestion anaĂ©robie (DA) est un bioprocĂ©dĂ© permettant la rĂ©duction du volume de dĂ©chets organiques et la production de biogaz, une Ă©nergie verte. Cependant, son dĂ©veloppement est limitĂ© du fait de nombreuses difficultĂ©s. Un de ces obstacles est la difficultĂ© de maintenir un procĂ©dĂ© stable et performant. Des amĂ©liorations dans le suivi de ce bioprocĂ©dĂ© est nĂ©cessaire, spĂ©cialement concernant la communautĂ© microbienne. Pour le moment le suivi du bon fonctionnement du bioprocĂ©dĂ© se base sur des analyses chimiques et l’expertise de l’exploitant. Hors le bon fonctionnement dĂ©pend principalement du fonctionnement de la communautĂ© microbienne au sein du digesteur. En effet, la vulnĂ©rabilitĂ© du microbiome face Ă  des modifications de paramĂštres opĂ©ratoires peut entrainer la dĂ©faillance des exploitations, la pollution due au non traitement des dĂ©chets ainsi que des pertes Ă©conomiques. La caractĂ©risation fine de la composition du microbiome et de son fonctionnement pourrait fournir des clĂ©s pour limiter le risque d’un dysfonctionnement du bioprocĂ©dĂ©. Pour ce faire, il est essentiel de comprendre prĂ©cisĂ©ment comment les paramĂštres techniques et chimiques du bioprocĂ©dĂ© influencent l’équilibre microbien et identifier les procĂ©dĂ©s mĂ©taboliques qui conduisent Ă  la dĂ©faillance du bioprocĂ©dĂ©.Des progrĂšs significatifs ont Ă©tĂ© rĂ©alisĂ©s ces derniĂšres annĂ©es dans la comprĂ©hension du microbiote anaĂ©robique grĂące au rĂ©cent dĂ©veloppement des techniques d’analyse molĂ©culaire Ă  haut dĂ©bit et des approches omiques. Parmi ces technologies il peut ĂȘtre citĂ© le sĂ©quençage du gĂšne codant pour l’ARN 16S. Ce gĂšne est prĂ©sent chez tous les microorganismes. Il contient des rĂ©gions hypervariables permettant l’identification des diffĂ©rents microorganismes en comparant les sĂ©quences obtenues Ă  des bases de donnĂ©es. L’analyse non ciblĂ©e du matĂ©riel gĂ©nĂ©tique d’un Ă©chantillon complexe se nomme la mĂ©tagĂ©nomique et permet l’étude globale du microbiome dans un Ă©chantillon Ă  un instant t. D’autres mĂ©thodologies omiques existent, telles que la mĂ©tatranscriptomique ou encore la mĂ©taprotĂ©omique. DiffĂ©rents niveaux d’information concernant l’écosystĂšme microbien sont fournis par ces techniques ce qui pourrait permettre, par exemple, de rĂ©aliser un diagnostic microbien du digesteur. Cela consisterait en un suivi d’indicateurs biologiques, qui pourraient ĂȘtre des enzymes, mĂ©tabolites ou des microorganismes spĂ©cifiques, pour dĂ©terminer le bon fonctionnement ou le risque d’une dĂ©faillance du digesteur.Les technologies molĂ©culaires Ă  haut dĂ©bit fournissent une quantitĂ© importante de donnĂ©es et extraire l’information clĂ© de ces jeux de donnĂ©es n’est pas chose aisĂ©e. Les analyses biostatistiques computationnelles peuvent aider Ă  identifier ces informations importantes. L’une des difficultĂ©s dans l’analyse statistiques est le choix de la mĂ©thode Ă  employer parmi toutes celles existantes et qui permettrait de rĂ©pondre de façon pertinente Ă  la question biologique que l’on se pose. Cependant, de nouveaux dĂ©veloppements sont encore nĂ©cessaires pour permettre l’analyse des donnĂ©es issues technologies d’analyse du microbiome et pour aller plus loin dans l’interprĂ©tation des donnĂ©es microbiennes obtenues. En effet, mĂȘme si un grand nombre d’information est maintenant disponible sur la modification de la communautĂ© microbienne par des paramĂštres340opĂ©rationnels, des questions demeurent. Par exemple : comment la composition de l’alimentation d’un digesteur influence la dynamique microbienne ? A quel niveau du bioprocĂ©dĂ© un inhibiteur influence un digesteur (performances globales, population microbienne, fonctions exprimĂ©es, mĂ©tabolites produits 
) ? Est-il possible d’identifier des bio-indicateurs prĂ©coces d’une inhibition 
?Dans ce contexte, l’objectif de mon travail de thĂšse est de dĂ©terminer comment la modification de diffĂ©rents paramĂštres influence le microbiome est comment cela impact les performances du digesteur. Pour cela, diffĂ©rentes technologies molĂ©culaires Ă  haut dĂ©bit ont Ă©tĂ© utilisĂ©es, plus spĂ©cifiquement l’analyse de l’ARN 16S et la mĂ©tabolomique. Nous avons choisi de travailler sur l’ARN 16S directement car cette technique permet de cibler spĂ©cifiquement les microorganismes actifs qui sont encore peu souvent Ă©tudiĂ©s. La mĂ©tabolomique permet l’étude des mĂ©tabolites qui sont des molĂ©cules de faibles poids molĂ©culaire, dont l’étude permet de dĂ©terminer les voies mĂ©tabolique utilisĂ©es lors de la dĂ©gradation d’un substrat. Cette mĂ©thodologie est particuliĂšrement rĂ©cente en comparaison des autres mĂ©thodologies omiques et est encore peu utilisĂ©e dans le domaine de la digestion anaĂ©robie. Pour extraire les informations essentielles et intĂ©grer les diffĂ©rentes donnĂ©es obtenues, des mĂ©thodes spĂ©cifiques de biostatistiques ont Ă©tĂ© utilisĂ©es. Ces mĂ©thodes ont Ă©tĂ© choisies pour leur pertinence Ă  rĂ©pondre aux questions posĂ©es durant ce travail de thĂšse.Le premier objectif de ce travail de thĂšse a Ă©tĂ© d’étudier l’influence de la composition et de sa modification sur l’activitĂ© microbienne. Une des stratĂ©gies pour l’optimisation des performances des digesteurs et contrer de possibles inhibitions, est de rĂ©aliser la digestion commune de diffĂ©rents dĂ©chets. Le choix de la composition de l’alimentation influence grandement les performances de production. Cependant, peu d’informations existent concernant le lien entre l’activitĂ© microbienne et la dĂ©gradation des substrats constituant l’alimentation. Dans un premier temps l’influence de la composition de l’alimentation a Ă©tĂ© Ă©tudiĂ©e. Les digesteurs ont Ă©tĂ© alimentĂ©s avec diffĂ©rents mĂ©langes de substrats. Les rĂ©sultats montrent que la composition en substrat joue un rĂŽle sur la diversitĂ© et la spĂ©cificitĂ© du microbiome. Ceci expliquerait les diffĂ©rences de performances de production de biogaz entre les rĂ©acteurs. Dans un deuxiĂšme temps, des corrĂ©lations entre la dĂ©gradation de diffĂ©rents substrats et l’activitĂ© microbienne ont Ă©tĂ© Ă©tablies grĂące Ă  l’intĂ©gration des donnĂ©es de l’analyse de l’ARN 16S et mĂ©tabolomique. Ce travail de thĂšse a permis d’établir de nouveaux potentiels dĂ©gradeurs de molĂ©cules spĂ©cifiques de diffĂ©rents substrats.Le second objectif de ce travail de thĂšse a Ă©tĂ© de dĂ©terminer l’influence de l’accumulation de l’azote ammoniacal sur l’activitĂ© microbienne. L’azote ammoniacal est un inhibiteur majeur de la digestion anaĂ©robie et particuliĂšrement de l’étape de mĂ©thanogĂ©nĂšse. Il peut ĂȘtre produit lors de la dĂ©gradation de substrats riches en protĂ©ines. Si certaines Ă©tudes ont permis d’identifier des microorganismes sensibles Ă  l’azote ammoniacal, aucun consensus n’a pu ĂȘtre Ă©tabli pour le moment. Dans ce travail une expĂ©rience a Ă©tĂ© rĂ©alisĂ©e en ajoutant de l’azote ammoniacal Ă  diffĂ©rentes vitesses. Les rĂ©sultats montrent qu’une accumulation rapide entraine des modifications importantes sur les performances des digesteurs. La capacitĂ© de rĂ©sistance des microorganismes a Ă©tĂ© Ă©tudiĂ©e en rĂ©alisant une Ă©tude longitudinale de l’ARN 16S tout au long de l’expĂ©rience. Cette analyse a permis d’évaluer la capacitĂ© d’adaptation des microbes face Ă  des conditions d’accumulation de l’azote ammoniacal diffĂ©rentes. De plus, des microorganismes spĂ©cifiquement341inhibĂ©s par l’accumulation de l’azote ammoniacal ont Ă©tĂ© identifiĂ©s et pourraient ĂȘtre utilisĂ©s comme de bio-indicateurs pour signaler une inhibition du digesteur. De la mĂȘme façon, l’évolution temporelle des mĂ©tabolites a Ă©tĂ© analysĂ©e.Le troisiĂšme et dernier objectif de ce travail de thĂšse a Ă©tĂ© de dĂ©terminer le mĂ©canisme permettant Ă  la zĂ©olite de limiter l’inhibition par l’azote ammoniacal. La zĂ©olite est un support minĂ©ral connue pour limiter les inhibitions pouvant avoir lieu durant le bioprocĂ©dĂ© est dues Ă  diffĂ©rents composĂ©s comme l’azote ammoniacal ou le phĂ©nol. DiffĂ©rentes hypothĂšses sur le rĂŽle de la zĂ©olite pour limiter l’inhibition ont Ă©tĂ© avancĂ©es : adsorption de l’azote, capacitĂ© d’échange d’ions ou le rĂŽle de support pour la croissance microbienne. Cependant, les Ă©tudes dĂ©crivant l’influence de la zĂ©olite sur l’activitĂ© microbienne et le lien avec les performances des digesteurs sont encore peu nombreuses. Dans ce travail, nous avons comparĂ© l’influence de la zĂ©olite sur les performances de production en prĂ©sence d’une faible quantitĂ© d’azote ammoniacal. De façon gĂ©nĂ©rale, la zĂ©olite n’influence pas la composition microbienne et les performances des digesteurs en absence d’azote ammoniacal, alors qu’un effet significatif a Ă©tĂ© observĂ© en prĂ©sence d’azote. Une analyse discriminante a permis de mettre en Ă©vidence l’impact de la zĂ©olite sur la syntrophie microbienne nĂ©cessaire Ă  la dĂ©gradation du propionate. Des donnĂ©es de la littĂ©rature ont Ă©tĂ© inclues Ă  l’analyse afin d’évaluer la gĂ©nĂ©ricitĂ© des rĂ©sultats.Les rĂ©sultats de ces travaux de thĂšse mettent en Ă©vidence l’importance des paramĂštres opĂ©rationnels sur l’activitĂ© microbienne. Des analyses statistiques innovantes ont Ă©tĂ© proposĂ©es pour dĂ©crire plus en profondeur le microbiome. Par exemple, des phylotypes clĂ©s sensibles Ă  des inhibitions spĂ©cifiques ont Ă©tĂ© identifiĂ©s. Certains pourraient ĂȘtre utilisĂ©s comme bio-indicateurs pour le suivi du fonctionnement des digesteurs. De plus, ce travail met en Ă©vidence la plus-value de la mĂ©tabolomique dans le domaine des bioprocĂ©dĂ©s, puisqu’elle permet de suivre la dĂ©gradation de la matiĂšre organique et de dĂ©duire le rĂŽle potentiel des microbes dans le procĂ©dĂ© de dĂ©gradation.ronomique vĂ©tĂ©rinaire et forestier de France SpĂ©cialitĂ© : sciences de l'environnement École doctorale n°581 Agriculture, alimentation, biologie, environnement et santĂ© (ABIES

    Zeolite favours propionate syntrophic degradation during anaerobic digestion of food waste under low ammonia stress

    No full text
    International audienceZeolite addition has been widely suggested for its ability to overcome ammonia stress occurring during anaerobic digestion. However little is known regarding the underlying mechanisms of mitigation and especially how zeolite influences the microbial structuration. The aim of this study was to bring new contributions on the effect of zeolite on the microbial community arrangement under a low ammonia stress. Replicated batch experiments were conducted. The microbial population was characterised with 16S sequencing. Methanogenic pathways were identified with methane isotopic fractionation. In presence of ammonia, zeolite mitigated the decrease of biogas production rate. Zeolite induced the development of Izimaplasmatales order and preserved Peptococcaceae family members, known as propionate degraders. Moreover methane isotopic fractionation showed that hydrogenotrophic methanogenesis was maintained in presence of zeolite under ammonia low stress. Our results put forward the benefit of zeolite to improve the bacteria-archaea syntrophy needed for propionate degradation and methane production under a low ammonia stress

    Co-digestion of wastewater sludge: choosing the optimal blend

    No full text
    International audienceAnaerobic co-digestion (AcoD) is a promising strategy to increase the methane production of anaerobic digestion plants treating wastewater sludge (WAS). In this work the degradability of six different mixtures of WAS with fish waste (FW) or garden-grass (GG) was evaluated and compared to the three mono-digestions. Degradation performances and methanogenic pathways, determined with the isotopic signatures of biogas, were compared across time. Fish and grass mono-digestion provided a higher final methane production than WAS mono-digestion. In co-digestion the addition of 25 % of fish was enough to increase the final methane production from WAS while 50 % of grass was necessary. To determine the optimal blend of WAS co-digestion two indicators were specifically designed, representing the maximum potential production (ODI) and the expected production in mono-digestion conditions (MDI). The comparison between these indicators and the experimental results showed that the most productive blend was composed of 75% of co-substrate, fish or grass, with WAS. Indeed, the final methane production was increased by 1.9 times with fish and by 1.7 times with grass associated to an increase of the methane production rate by 1.5 times. Even if the same succession of methanogenic pathways across time was observed for the different mixtures, their relative proportions were different. Sewage sludge degradation was mostly achieved through hydrogenotrophic pathway as confirmed by the archaeal analysis while acetoclastic archaea were identified for fish and grass degradation

    Environment rather than breed or body site shapes the skin bacterial community of healthy sheep as revealed by metabarcoding

    Full text link
    BackgroundThe skin is inhabited by a variety of micro‐organisms, with bacteria representing the predominant taxon of the skin microbiome. In sheep, the skin bacterial community of healthy animals has been addressed in few studies, only with culture‐based methods or sequencing of cloned amplicons.ObjectivesThe objectives of this study were to determine the sheep skin bacterial community composition by using metabarcoding for a detailed characterisation and to determine the effect of body part, breed and environment.Materials and MethodsOverall, 267 samples were taken from 89 adult female sheep, belonging to three different breeds and kept on nine different farms in Switzerland. From every individual, one sample each was taken from belly, left ear and left leg and metabarcoding of the 16S rRNA V3–V4 hypervariable region was performed.ResultsThe main phyla identified were Actinobacteriota, Firmicutes, Proteobacteria and Bacteriodota. The alpha diversity as determined by Shannon's diversity index was significantly different between sheep from different farms. Beta diversity analysis by principal coordinate analysis (PCoA) showed clustering of the samples by farm and body site, while breed had only a marginal influence. A sparse partial least squares discriminant analysis (sPLS‐DA) revealed seven main groups of operational taxonomic units (OTUs) of which groups of OTUs were specific for some farms.Conclusions and Clinical RelevanceThese findings indicate that environment has a larger influence on skin microbial variability than breed, although the sampled breeds, the most abundant ones in Switzerland, are phenotypically similar. Future studies on the sheep skin microbiome may lead to novel insights in skin diseases and prevention

    Microbial genome collection of aerobic granular sludge cultivated in sequential batch reactor using different carbon source mixtures

    No full text
    <p><strong>Abstract </strong></p> <p>Aerobic granular sludge microogranisms are cultivated in a sequential batch reactor (SRB), and samples were fed different carbon source mixtures, including volatile fatty acids (day 71), complex monomeric (day 322 and 427), and complex polymeric (day 740). This study utilizes the dataset PRJEB38840 (Adler et al 2022 Sfam) to construct a hybrid assembly of Illumina short reads (two samples: DNA extraction A and B) and PacBio long reads (one sample: DNA extraction A) using the SPAdes assembler. The resulting metagenomic assemblies are presented for each of the days 71, 322, 427, 740. From this work, 478 new quality-controlled MAGs were obtained. Combined with 275 unpublished MAGs (Adler et al) and 6 MAGs from Aline adler, Sfam 2022. Making a in-house genome collection of 759 MAGs in total. These MAGs have been dereplicated to obtain representatives (n=233). The whole MAG collection is indexed using the gtdb taxonomy and are accompanied by key metrics such as genome size, number of contigs, and N50 value. Additionally, the study offers R-codes for data analysis. </p&gt

    Assessment of the microbial interplay during anaerobic co-digestion of wastewater sludge using common components analysis

    No full text
    International audienceAnaerobic digestion (AD) is used to minimize solid waste while producing biogas by the action of microorganisms. To give an insight into the underlying microbial dynamics in anaerobic digesters, we investigated two different AD systems (wastewater sludge mixed with either fish or grass waste). The microbial activity was characterized by 16S RNA sequencing. 16S data is sparse and dispersed, and existent data analysis methods do not take into account this complexity nor the potential microbial interactions. In this line, we proposed a data pre-processing pipeline addressing these issues while not restricting only to the most abundant microorganisms. The data were analyzed by Common Components Analysis (CCA) to decipher the effect of substrate composition on the microorganisms. CCA results hinted the relationships between the microorganisms responding similarly to the AD physicochemical parameters. Thus, in overall, CCA allowed a better understanding of the inter-species interactions within microbial communities

    Unraveling the microbial community interactions in anaerobic digesterswith common components analysis

    No full text
    Unraveling the microbial community interactions in anaerobic digesterswith common components analysis. Chimiométrie 201

    Assessment of substrate biodegradability improvement in anaerobic Co-digestion using a chemometrics-based metabolomic approach

    No full text
    International audienceMicrobial community-driven digestion patterns can be explored with metabolomics. Grass anaerobic digestion is marked by the consumption of dipeptides. Fish anaerobic digestion is marked by the consumption of biogenic amines. Adding grass did not improve the metabolic degradability of sludge. By adding 25% fish, the metabolic degradability of sludge was doubled

    Microbial genome collection of aerobic granular sludge cultivated in sequential batch reactor using different carbon source mixtures

    No full text
    <p>Aerobic granular sludge microogranisms are cultivated in a sequential batch reactor (SRB), and a metagenome-assembled genome has been successfully acquired through the use of Illumina short-read and PacBio long-read metagenomics. This genome collection builds on a prior study (<a href="https://ami-journals.onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.15947">PRJEB38840; Aline adler, Sfam 2022</a>) by obtaining raw sequences of short-read and long-read metagenomics. This study utilizes the<a href="https://www.ncbi.nlm.nih.gov/sra?linkname=bioproject_sra_all&from_uid=650103"> dataset</a> to construct a hybrid assembly of Illumina short reads (two samples: DNA extraction A and B) and PacBio long reads (one sample: DNA extraction A) using the SPAdes assembler. The resulting metagenomic assemblies are presented for each of the days (71, 322, 427, 740), and samples were fed different carbon source mixtures, including volatile fatty acids (day 71), complex monomeric (day 322 and 427), and complex polymeric (day 740). The study also conducts a comparative analysis of the new and old MAGs and provides the combined dataset to the public (n=759). These MAGs have been dereplicated to obtain representatives (n=233). The whole MAG collection is indexed using the gtdb taxonomy and are accompanied by key metrics such as genome size, number of contigs, and N50 value. Additionally, the study offers R-codes for data analysis.</p&gt

    Integrative Analyses to Investigate the Link between Microbial Activity and Metabolite Degradation during Anaerobic Digestion

    No full text
    International audienceAnaerobic digestion (AD) is a promising biological process that converts waste into sustainable energy. To fully exploit AD's capability, we need to deepen our knowledge of the microbiota involved in this complex bioprocess. High-throughput methodologies open new perspectives to investigate the AD process at the molecular level, supported by recent data integration methodologies to extract relevant information. In this study, we investigated the link between microbial activity and substrate degradation in a lab-scale anaerobic codigestion experiment, where digesters were fed with nine different mixtures of three cosubstrates (fish waste, sewage sludge, and grass). Samples were profiled using 16S rRNA sequencing and untargeted metabolomics. In this article, we propose a suite of multivariate tools to statistically integrate these data and identify coordinated patterns between groups of microbial and metabolic profiles specific of each cosubstrate. Five main groups of features were successfully evidenced, including cadaverine degradation found to be associated with the activity of microorganisms from the order Clostridiales and the genus Methanosarcina. This study highlights the potential of data integration toward a comprehensive understanding of AD microbiota
    corecore