1,113 research outputs found

    Agricultural Market Structure, Generic Advertising, and Welfare

    Get PDF
    This analysis begins with a definition and discussion of productive advertising. Then, following Dixit and Norman, persuasive advertising is used to study the welfare effects of generic advertising by marketing orders. The study first examines horizontal competition when the competing advertiser is a monopoly, and results show that the socially optimal level of advertising for a competitive marketing order is positive only if advertising raises monopoly output. Next, advertising choices of a marketing order which sells its output to a monopolistic distributor are considered. If the distributor is a monopolist, then marketing order advertising raises welfare. This finding is in marked contrast to the results for the horizontal case studied by Dixit and Norman.advertising, market structure, welfare, Marketing,

    The nonlinear viscoelastic response of resin matrix composite laminates

    Get PDF
    Possible treatments of the nonlinear viscoelastic behavior of materials are reviewed. A thermodynamic based approach, developed by Schapery, is discussed and used to interpret the nonlinear viscoelastic response of a graphite epoxy laminate, T300/934. Test data to verify the analysis for Fiberite 934 neat resin as well as transverse and shear properties of the unidirectional T300/934 composited are presented. Long time creep characteristics as a function of stress level and temperature are generated. Favorable comparisons between the traditional, graphical, and the current analytical approaches are shown. A free energy based rupture criterion is proposed as a way to estimate the life that remains in a structure at any time

    Evaluating the exit pressure method for measurements of normal stress difference at high shear rates

    Get PDF
    A challenge for polymer rheology is the reliable determination of shear dependent first normal stress difference (N-1 values) at high shear rates (>10 s(-1)). Here, we evaluate the correctness of the commonly applied exit pressure method focusing on polypropylene and high and low density polyethylene melts at 200 degrees C. It is demonstrated that the linear extrapolation of pressure values toward the die exit, which is a key step in the application of the exit pressure method, is affordable to determine N-1 values despite that these extrapolated exit pressure values are characterized by a relative deviation of 25%-40%. The validity of the exit pressure method is further supported by an excellent match with rheological data from the Laun rule (exponent close to 0.7) and a representative simulation of extrudate swelling data in the width and height direction, considering tuned parameters for the Phan-Thien-Tanner constitutive model. Also, the absence of a significant viscous heating effect near the die exit is highlighted based on numerical analysis. (c) 2020 The Society of Rheology

    General dynamics of the physical-chemical systems in mammals

    Get PDF
    Biodynamic regulator chain models for physical chemical systems in mammal

    Replacement of electronics with fluid interaction devices summary report

    Get PDF
    Replacement of electronics with fluid interaction devices in actuation syste

    Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend developed for extrusion- based additive manufacturing

    Get PDF
    Bio-material polylactic acid and poly(butylene adipate-co-terephthalate) were blended to achieve increased ductility of the blend. Cloisite was added to improve the stiffness of the blend. The blends were made into filament suitable for extrusion-based additive manufacturing. Melt flow index of the filament and mechanical properties of the printed bars were tested. Preliminary results showed that the melt flow index increases significantly with cloisite and the modulus of polylactic acid/poly(butylene adipate-co-terephthalate) improved slightly. The notched impact strength of the blend increased with increasing content of cloisite, and it increased significantly after annealing, especially for blends without cloisite

    Three-dimensional flow simulations for polymer extrudate swell out of slit dies from low to high aspect ratios

    Get PDF
    The impact of the slit die geometry and the polymer melt flow characteristics on the extrudate swell behavior, which is a key extrusion operating parameter, is highlighted. Three-dimensional (3D) numerical simulations based on the finite element method are compared with their conventional two-dimensional (2D) counterparts at the same apparent shear rates using ANSYS Polyflow software. The rheological behavior is described by the differential multimode Phan-Thien-Tanner constitutive model, with polypropylene as a reference. It is shown that increasing the aspect ratio of the die geometry (width/height ratio variation from 1 to 20) contributes to a significant change in the 3D extrudate deformation (relative changes of 10% in several directions; absolute changes up to 30%) and delays the equilibrium axial position (up to a factor 10). High aspect ratios induce a switch to contract flow (swell ratio <1) for the edge height swell. The 3D extrudate swell strongly deviates from the 2D simplified case due to the die effect near the wall, even for higher aspect ratios. Also a different relation with the material parameters is recorded. The initially large swell behavior is followed by a small shrinkage flow in the middle height direction which cannot be captured by the 2D counterpart. The findings are supported by a comprehensive analysis of the velocity and stress fields in and out of the slit dies

    Die swell of Polypropylene flow through a slit die: experiment and 3D simulation

    Get PDF
    • …
    corecore