4,020 research outputs found

    Comparing Wearer DNA Sample Collection Methods for the Recovery of Single Source Profiles

    Get PDF
    Wearer DNA is the deposit of epithelial cells on clothing worn by an individual. Detection of the last individual to handle or wear an item is often an important and desirable determination in forensic science. The most commonly used collection methods for wearer DNA include swabbing and scraping. These often result in mixture profiles. Recently, adhesives have been introduced as a possible reliable method for the collection of biological evidence. The goal of the research was to compare the current collection methods of swabbing and scraping with a gel film called Gel-Pak ‘0’ which shares similar properties with adhesives. Gel-Pak ‘0’ has been previously studied in comparison to other adhesives for the collection of epithelial cells, and was shown to recover the top layer of loose particulate. This particulate had a tendency to be deposited by the individual who last came in contact with an item. Therefore, in comparison to the other two collection methods, Gel-Pak ‘0’ was hypothesized to recover single source profiles on clothing items from the most recent wearer. DNA analysis was performed on samples collected by the three methods from various clothing items including baseball hats, t-shirts, sweatpants, socks, and other items commonly submitted to crime labs for DNA analysis. The habitual wearer and the second/last wearer wore each item for a predetermined amount of time. The results of the research showed that Gel-Pak ‘0’ recovered a similar number of CODIS (local and national) eligible profiles as swabbing. However, coupled with the fact that it is time consuming, costly, and cannot be used on all surfaces, Gel-Pak ‘0’ was determined to not make for an effective collection method of the most recent wearer’s DNA. Therefore, Gel-Pak ‘0’ will not be considered for casework. Although Gel-Pak ‘0’ will not be further used, the results did reveal some trends that may shed light on how DNA analysts may approach wearer DNA cases. Swabbing had a tendency to yield smaller amounts of DNA in comparison to scraping, but obtain DNA from the last wearer of the piece of clothing more effectively than the other two methods. Scraping had a tendency to yield greater quantities of DNA, recovering more DNA from the habitual wearer due to its invasive nature. Revealing individuals who last wore an item can be of great importance in forensic science, and therefore, further research with various adhesives and gel films could be vital for solving forensic investigations

    Cluster size distributions in gas jets for different nozzle geometries

    Full text link
    Cluster size distributions were investigated in case of different nozzle geometries in argon and xenon using Rayleigh scattering diagnostics. Different nozzle geometries result in different behaviour, therefore both spatial- and temporal cluster size distributions were studied to obtain a well-characterized cluster target. It is shown that the generally used Hagena scaling can result in a significant deviation from the observed data and the behaviour cannot be described by a single material condensation parameter. The results along with the nanoplasma model applied to the data of previous high harmonic generation experiments allow the independent measurement of cluster size and cluster density.Comment: 7 pages, 6 figure

    On the trade-off between redundancy and cohesiveness in extractive summarization

    Get PDF
    Extractive summaries are usually presented as lists of sentences with no expected cohesion between them and with plenty of redundant information if not accounted for. In this paper, we investigate the trade-offs incurred when aiming to control for inter-sentential cohesion and redundancy in extracted summaries, and their impact on their informativeness. As case study, we focus on the summarization of long, highly redundant documents and consider two optimization scenarios, reward-guided and with no supervision. In the reward-guided scenario, we compare systems that control for redundancy and cohesiveness during sentence scoring. In the unsupervised scenario, we introduce two systems that aim to control all three properties --informativeness, redundancy, and cohesiveness-- in a principled way. Both systems implement a psycholinguistic theory that simulates how humans keep track of relevant content units and how cohesiveness and non-redundancy constraints are applied in short-term memory during reading. Extensive automatic and human evaluations reveal that systems optimizing for --among other properties-- cohesiveness are capable of better organizing content in summaries compared to systems that optimize only for redundancy, while maintaining comparable informativeness. We find that the proposed unsupervised systems manage to extract highly cohesive summaries across varying levels of document redundancy, although sacrificing informativeness in the process. Finally, we lay evidence as to how simulated cognitive processes impact the trade-off between the analysed summary properties

    Coupled-cluster theory of a gas of strongly-interacting fermions in the dilute limit

    Full text link
    We study the ground-state properties of a dilute gas of strongly-interacting fermions in the framework of the coupled-cluster expansion (CCE). We demonstrate that properties such as universality, opening of a gap in the excitation spectrum and applicability of s-wave approximations appear naturally in the CCE approach. In the zero-density limit, we show that the ground-state energy density depends on only one parameter which in turn may depend at most on the spatial dimensionality of the system.Comment: 7 figure

    Gas-to-gas heat exchanger design for high performance thermal energy storage

    Get PDF
    The mathematical modelling and optimization of a gas-to-gas heat exchanger with a non-constant cross sectional area is presented. The design of the cross sectional area of the heat exchanger analyzed is based on an hexagonal mesh, which would be highly impractical to fabricate in a conventional way but could be built relatively easily through modern manufacturing techniques. The geometric configuration proposed allows attaining a high exergy efficiency and a significant cost reduction, measured in terms of volume per unit of exergy transfer. The relationship that exists between the overall exergy efficiency of the heat exchanger and its cost is thoroughly explained throughout the study. The results obtained from the modelling demonstrate the premise that it is possible to realize designs for heat exchangers that are highly exergy-efficient and very cheap, owing to the small volume of material required, if the constrains imposed by the limitations of traditional manufacturing methods are set aside. Furthermore, the study reveals a very important fact: the volume of material in a heat exchanger increases in quadratic proportion to its characteristic dimension, which implies that scaling up the geometry has a strong impact on its cost-effectiveness

    Estructura orgĂĄnica de la cooperativa

    Get PDF
    Cartilla que describe cĂłmo interpretar un organigrama, los niveles jerĂĄrquicos de los Ăłrganos y cargos administrativos de los diferentes estamentos, asĂ­ como las funciones y caracterĂ­sticas de las personas que desempeñan los diversos cargosPrimer that describes how to interpret an organizational chart, the hierarchical levels of the administrative bodies and positions of the different estates, as well as the functions and characteristics of the persons who perform the various positionsEstructura orgĂĄnica de la cooperativa -- Órganos de la administraciĂłn -- Cargos de la administraciĂłn -- Estatus de la cooperativa50 pĂĄgina

    Analysis of the Effects of Dam Release Properties and Ambient Groundwater Flow on Surface Water‐Groundwater Exchange Over a 100‐km‐Long Reach

    Get PDF
    Hydroelectric dams often create highly dynamic downstream flows that promote surface water‐groundwater (SW‐GW) interactions including bank storage, the temporary storage of river water in the riverbank. Previous research on SW‐GW exchanges in dammed rivers has primarily been at single study sites, which has limited the understanding of how these exchanges evolve as dam releases travel downstream. This study evaluates how dam releases affect SW‐GW exchange continuously over a 100‐km distance. This is accomplished by longitudinally routing water releases through a synthetic river and modeling bed and bank fluid and solute exchange across transverse transects spaced along the reach. Peak and square dam release hydrograph shapes with three magnitudes (0.5, 1.0, and 1.5 m) were considered. The effect of four ambient groundwater flow conditions (very slightly losing, neutral, and two gaining from the perspective of the river) was evaluated for each dam release scenario. Both types of dam release shapes cause SW‐GW interaction over the entire 100‐km distance, and our results show that square type releases cause bank storage exchange well beyond this distance. Strongly gaining conditions reduce the amount of exchange and allow flushing of river‐sourced solute out of the bank after the dam pulse has passed. Both neutral and losing conditions have larger fluid and solute flux into the bank and limit the amount of solute that returns to the river. Our results support that river corridors downstream of dams have increased river‐aquifer connectivity and that this enhanced connectivity can extend at least 100 km downstream

    Review article: the diagnostic approach and current management of chylous ascites

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138889/1/apt14284.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138889/2/apt14284_am.pd
    • 

    corecore