6 research outputs found

    Coherent Laser Instrument Would Measure Range and Velocity

    Get PDF
    A proposed instrument would project a narrow laser beam that would be frequency-modulated with a pseudorandom noise (PN) code for simultaneous measurement of range and velocity along the beam. The instrument performs these functions in a low mass, power, and volume package using a novel combination of established techniques. Originally intended as a low resource- footprint guidance sensor for descent and landing of small spacecraft onto Mars or small bodies (e.g., asteroids), the basic instrument concept also lends itself well to a similar application guiding aircraft (especially, small unmanned aircraft), and to such other applications as ranging of topographical features and measuring velocities of airborne light-scattering particles as wind indicators. Several key features of the instrument s design contribute to its favorable performance and resource-consumption characteristics. A laser beam is intrinsically much narrower (for the same exit aperture telescope or antenna) than a radar beam, eliminating the need to correct for the effect of sloping terrain over the beam width, as is the case with radar. Furthermore, the use of continuous-wave (CW), erbium-doped fiber lasers with excellent spectral purity (narrow line width) permits greater velocity resolution, while reducing the laser s power requirement compared to a more typical pulsed solid-state laser. The use of CW also takes proper advantage of the increased sensitivity of coherent detection, necessary in the first place for direct measurement of velocity using the Doppler effect. However, measuring range with a CW beam requires modulation to "tag" portions of it for time-of-flight determination; typically, the modulation consists of a PN code. A novel element of the instrument s design is the use of frequency modulation (FM) to accomplish both the PN-modulation and the Doppler-bias frequency shift necessary for signed velocity measurements. This permits the use of a single low-power waveguide electrooptic phase modulator, while simultaneously mitigating the effects of speckle as a noise source in the coherent detection

    The Thermal Electrical Conductivity Probe (TECP) for Phoenix

    Get PDF
    The Thermal and Electrical Conductivity Probe (TECP) is a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) payload on the Phoenix Lander. TECP will measure the temperature, thermal conductivity and volumetric heat capacity of the regolith. It will also detect and quantify the population of mobile H2O molecules in the regolith, if any, throughout the polar summer, by measuring the electrical conductivity of the regolith, as well as the dielectric permittivity. In the vapor phase, TECP is capable of measuring the atmospheric H2O vapor abundance, as well as augment the wind velocity measurements from the meteorology instrumentation. TECP is mounted near the end of the 2.3 m Robotic Arm, and can be placed either in the regolith material or held aloft in the atmosphere. This paper describes the development and calibration of the TECP. In addition, substantial characterization of the instrument has been conducted to identify behavioral characteristics that might affect landed surface operations. The greatest potential issue identified in characterization tests is the extraordinary sensitivity of the TECP to placement. Small gaps alter the contact between the TECP and regolith, complicating data interpretation. Testing with the Phoenix Robotic Arm identified mitigation techniques that will be implemented during flight. A flight model of the instrument was also field tested in the Antarctic Dry Valleys during the 2007-2008 International Polar year.

    An Overview of NASA's Mars Science Laboratory

    No full text
    This paper provides a high level overview of NASA's Mars Science Laboratory. Topics to be explored are the Mission's science goals and objectives, a discussion of the mission phases, an overview of the flight system architecture and the payload, and a discussion of the MSL power system

    Weathering rates of sandstone in a semi-arid environment (Hunter Valley, Australia)

    No full text
    The rate of sandstone weathering in the semi-arid climate of the Hunter Valley, New South Wales, Australia has been estimated from observations of gravestone weathering in the area. The gravestone data points to two distinct stages in the weathering process. The first stage covering the first century of exposure is characterised by a relatively low recession rate of 0.5 mm/100 years. This is followed by a second stage in which the rate of weathering increases sharply to ca 2.5 mm/100 years. The non-linear nature of the weathering trends over time suggests that during the first century of exposure, structural changes took place within the sandstone material, which lay the foundation for accelerated weathering after further exposure. Laboratory trials were also conducted to identify the effectiveness of different weathering processes in the decay of sandstone in this region. Of the four processes examined, only the freeze-thaw cycle produced a significant degree of mass loss and is therefore most likely a strong contributor to the weathering of sandstone in this region
    corecore