313 research outputs found

    Preventive planning model for rescue priority management in seismic emergency

    Get PDF
    Natural materials, such as soils, are influenced by many factors acting during their formative and evolutionary process: atmospheric agents, erosion and transport phenomena, sedimentation conditions that give soil properties a non-reducible randomness by using sophisticated survey techniques and technologies. This character is reflected not only in spatial variability of properties which differs from point to point, but also in multivariate correlation as a function of reciprocal distance. Cognitive enrichment, offered by the response of soils associated with their intrinsic spatial variability, implies an increase in the evaluative capacity of the contributing causes and potential effects in failure phenomena. Stability analysis of natural slopes is well suited to stochastic treatment of uncertainty which characterized landslide risk. In particular, this study has been applied through a back- analysis procedure to a slope located in Southern Italy that was subject to repeated phenomena of hydrogeological instability (extended for several kilometres in recent years). The back-analysis has been carried out by applying spatial analysis to the controlling factors as well as quantifying the hydrogeological hazard through unbiased estimators. A natural phenomenon, defined as stochastic process characterized by mutually interacting spatial variables, has led to identify the most critical areas, giving reliability to the scenarios and improving the forecasting content. Moreover, the phenomenological characterization allows the optimization of the risk levels to the wide territory involved, supporting decision-making process for intervention priorities as well as the effective allocation of the available resources in social, environmental and economic contexts

    Landslide risk management through spatial analysis and stochastic prediction for territorial resilience evaluation

    Get PDF
    Natural materials, such as soils, are influenced by many factors acting during their formative and evolutionary process: atmospheric agents, erosion and transport phenomena, sedimentation conditions that give soil properties a non-reducible randomness by using sophisticated survey techniques and technologies. This character is reflected not only in spatial variability of properties which differs from point to point, but also in multivariate correlation as a function of reciprocal distance. Cognitive enrichment, offered by the response of soils associated with their intrinsic spatial variability, implies an increase in the evaluative capacity of the contributing causes and potential effects in failure phenomena. Stability analysis of natural slopes is well suited to stochastic treatment of uncertainty which characterized landslide risk. In particular, this study has been applied through a back- analysis procedure to a slope located in Southern Italy that was subject to repeated phenomena of hydrogeological instability (extended for several kilometres in recent years). The back-analysis has been carried out by applying spatial analysis to the controlling factors as well as quantifying the hydrogeological hazard through unbiased estimators. A natural phenomenon, defined as stochastic process characterized by mutually interacting spatial variables, has led to identify the most critical areas, giving reliability to the scenarios and improving the forecasting content. Moreover, the phenomenological characterization allows the optimization of the risk levels to the wide territory involved, supporting decision-making process for intervention priorities as well as the effective allocation of the available resources in social, environmental and economic contexts

    Spatio-temporal variability analysis of territorial resistance and resilience to risk assessment

    Get PDF
    Natural materials, such as soils, are influenced by many factors acting during their formative and evolutionary process: atmospheric agents, erosion and transport phenomena, sedimentation conditions that give soil properties a non-reducible randomness by using sophisticated survey techniques and technologies. This character is reflected not only in the spatial variability of soil properties which differ punctually, but also in their multivariate correlation as function of reciprocal distance. Cognitive enrichment, offered by the response of soils associated with their spatial variability, implies an increase in the evaluative capacity of contributing causes and potential effects in the field of failure phenomena. Stability analysis of natural slopes is well suited to stochastic treatment of the uncertainty which characterized landslide risk. In particular, the research activity has been carried out in back-analysis to a slope located in Southern Italy that was subject to repeated phenomena of hydrogeological instability - extended for several kilometers and recently reactivated - applying spatial analysis to the controlling factors and quantifying the hydrogeological susceptibility through unbiased estimators and indicators. A natural phenomenon, defined as geo-stochastic process, is indeed characterized by interacting variables leading to identifying the most critical areas affected by instability. Through a sensitivity analysis of the local variability as well as a reliability assessment of the time-based scenarios, an improvement of the forecasting content has been obtained. Moreover, the phenomenological characterization will allow to optimize the attribution of the levels of risk to the wide territory involved, supporting decision-making process for intervention priorities as well as the effective allocation of the available resources in social, environmental and economic contexts

    High Dynamic Optimized Carrier Loop Improvement for Tracking Doppler Rates

    Get PDF
    Mathematical analysis and optimization of a carrier tracking loop are presented. Due to fast changing of the carrier frequency in some satellite systems, such as Low Earth Orbit (LEO) or Global Positioning System (GPS), or some planes like Unmanned Aerial Vehicles (UAVs), high dynamic tracking loops play a very important role. In this paper an optimized tracking loop consisting of a third-order Phase Locked Loop (PLL) assisted by a second-order Frequency Locked Loop (FLL) for UAVs is proposed and discussed. Based on this structure an optimal loop has been designed. The main advantages of this approach are the reduction of the computation complexity and smaller phase error. The paper shows the simulation results, comparing them with a previous work

    Hardware design of LIF with Latency neuron model with memristive STDP synapses

    Full text link
    In this paper, the hardware implementation of a neuromorphic system is presented. This system is composed of a Leaky Integrate-and-Fire with Latency (LIFL) neuron and a Spike-Timing Dependent Plasticity (STDP) synapse. LIFL neuron model allows to encode more information than the common Integrate-and-Fire models, typically considered for neuromorphic implementations. In our system LIFL neuron is implemented using CMOS circuits while memristor is used for the implementation of the STDP synapse. A description of the entire circuit is provided. Finally, the capabilities of the proposed architecture have been evaluated by simulating a motif composed of three neurons and two synapses. The simulation results confirm the validity of the proposed system and its suitability for the design of more complex spiking neural network

    Imprecise Arithmetic for Low Power Image Processing

    Get PDF
    Sometimes reducing the precision of a numerical processor, by introducing errors, can lead to significant performance (delay, area and power dissipation) improvements without compromising the overall quality of the processing. In this work, we show how to perform the two basic operations, addition and multiplication, in an imprecise manner by simplifying the hardware implementation. With the proposed 'sloppy' operations, we obtain a reduction in delay, area and power dissipation, and the error introduced is still acceptable for applications such as image processing. © 2012 IEEE

    Fully digital intensity modulated LIDAR

    Get PDF
    AbstractIn several applications, such as collision avoidance, it is necessary to have a system able to rapidly detect the simultaneous presence of different obstacles. In general, these applications do not require high resolution performance, but it is necessary to assure high system reliability also within critical scenarios, as in the case of partially transparent atmosphere or environment in presence of multiple objects (implying multiple echoes having different delay times.) This paper describes the algorithm, the architecture and the implementation of a digital Light Detection and Ranging (LIDAR) system based on a chirped optical carrier. This technique provides some advantages compared to the pulsed approach, primarily the reduction of the peak power of the laser. In the proposed architecture all the algorithms for signal processing are implemented using digital hardware. In this way, some specific advantages are obtained: improved detection performance (larger dynamics, range and resolution), capability of detecting multiple obstacles having different echoes amplitude, reduction of the noise effects, reduction of the costs, size and weight of the resulting equipment. The improvement provided by this fully digital solution is potentially useful in different applications such as: collision avoidance systems, 3D mapping of environments and, in general, remote sensing systems which need wide distance and dynamics

    Linking healthcare and societal resilience during the Covid-19 pandemic

    Get PDF
    Coronavirus disease 2019 (Covid-19) has highlighted the link between public healthcare and the broader context of operational response to complex crises. Data are needed to support the work of the emergency services and enhance governance. This study develops a Europe-wide analysis of perceptions, needs and priorities of the public affected by the Covid-19 emergency. An online multilingual survey was conducted from mid-May until mid-July 2020. The questionnaire investigates perceptions of public healthcare, emergency management and societal resilience. In total, N = 3029 valid answers were collected. They were analysed both as a whole and focusing on the most represented countries (Italy, Romania, Spain and the United Kingdom). Our findings highlight some perceived weaknesses in emergency management that are associated with the underlying vulnerability of the global interconnected society and public healthcare systems. The spreading of the epidemic in Italy represented a ‘tipping point’ for perceiving Covid-19 as an ‘emergency’ in the surveyed countries. The respondents uniformly suggested a preference for gradually restarting activities. We observed a tendency to ignore the cascading effects of Covid-19 and possible concurrence of threats. Our study highlights the need for practices designed to address the next phases of the Covid-19 crisis and prepare for future systemic shocks. Cascading effects that could compromise operational capacity need to be considered more carefully. We make the case for the reinforcement of cross-border coordination of public health initiatives, for standardization in business continuity management, and for dealing with the recovery at the European level

    Power Efficient Design of Parallel/Serial FIR Filters in RNS

    Get PDF
    It is well known that the Residue Number System (RNS) provides an efficient implementation of parallel FIR filters especially when the filter order and the dynamic range are high. The two main drawbacks of RNS, need of converters and coding overhead, make a serialized implementation of the FIR filter potentially disadvantageous with respect to filters implemented in the conventional number systems. In this work, we show a number of solutions which demonstrate that the power efficiency of RNS FIR filters implemented serially is maintained in ASIC technology, while in modern FPGA technology RNS implementations are less efficien
    • …
    corecore