7 research outputs found

    On the effect of ultrasound-assisted atmospheric freeze-drying on the antioxidant properties of eggplant

    Full text link
    [EN] The low operating temperatures employed in atmospheric freeze-drying permits an effective drying of heat sensitive products, without any impairment of their quality attributes. When using power ultrasound, the drying rate can be increased, thus reducing the process duration. However, ultrasound can also affect the product quality. The aim of this study was to evaluate the effect of various drying process variables, namely air temperature and velocity, ultrasound power and sample size, on the antioxidant properties of eggplant (Solanum Melongena L.) samples. For this reason, drying experiments were carried out at different drying temperatures (-5, -7.5, -10 °C), power ultrasound levels (0, 25, 50 W; 21.9 kHz) and air velocities (2, 5 m s-1) using different sample sizes (8.8 mm and 17.6 mm cube side). The ascorbic acid content (Jagota and Dani method), total phenolic content (Folin-Ciocalteau method), and the antioxidant capacity (FRAP method) of the dried products were considered as quality indicators of the dried samples. The increase in air velocity and temperature, as well as the sample size, significantly reduced the antioxidant potential of the dried samples (p-value < 0.05). For a given sample size, the application of ultrasound, at the acoustic power levels tested, did not produce significant effects on the antioxidant indicators considered. Temperature measurements inside the drying sample showed a non-negligible temperature rise when acoustic power was applied.The authors acknowledge the financial support from Generalitat Valenciana (PROMETEOII/2014/005) and INIA-ERDF (RTA2015-00060-C04-02).Colucci, D.; Fisore, D.; Rosselló, C.; Carcel Carrión, JA. (2018). On the effect of ultrasound-assisted atmospheric freeze-drying on the antioxidant properties of eggplant. Food Research International. 106:580-588. https://doi.org/10.1016/j.foodres.2018.01.022S58058810

    Development of dried probiotic apple cubes incorporated with Lactobacillus casei NRRL B-442

    Full text link
    [EN] This work presents the development of a probiotic dried apple snack consisting of dried apple cubes impregnated with Lactobacillus casei NRRL B-442. Apple cubes were impregnated with probiotic microorganisms and dried under different temperatures (10-60 degrees C), with or without application of ultrasound. The viability of Lactobacillus casei in the dried apple snack was evaluated studying the effects of drying conditions and ultrasound application (as a drying enhancing technology). A mathematical model was developed to predict the drying kinetics and the inactivation of Lactobacillus casei. Drying and microorganism inactivation rates increased with increasing process temperature and with ultrasound application. The concentration of probiotics in the apple snacks was similar to the concentration of microorganisms in commercial probiotic dairy products when the apples were dried at 60 degrees C or when ultrasound-assisted air-drying was applied, thus proving that the production of dried probiotic apple snacks is possible and technically viable.The authors acknowledge the financial support of Generalitat Valenciana (PROMETEOII/2014/005) from Spain, and the financial support and the award of a scholarship of CNPq from Brazil.Rodrigues, S.; Silva, LCA.; Mulet Pons, A.; Carcel Carrión, JA.; Fernandes, FA. (2018). Development of dried probiotic apple cubes incorporated with Lactobacillus casei NRRL B-442. Journal of Functional Foods. 41:48-54. https://doi.org/10.1016/j.jff.2017.12.042S48544

    Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality

    Full text link
    This is the peer reviewed version of the following article:Rogríguez, Óscar, Eim, Valeria S., Roselló Matas, Carmen, Femenía, Antonio, Carcel Carrión, Juan Andrés, Simal, Susana. (2018). Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality.Journal of the Science of Food and Agriculture, 98, 5, 1660-1673. DOI: 10.1002/jsfa.8673, which has been published in final form at http://doi.org/10.1002/jsfa.8673. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Drying gives rise to products with a long shelf life by reducing the water activity to a level that is sufficiently low to inhibit the growth of microorganisms, enzymatic reactions and other deteriorative reactions. Despite the benefits of this operation, the quality of heat sensitive products is diminished when high temperatures are used. The use of low drying temperatures reduces the heat damage but, because of a longer drying time, oxidation reactions occur and a reduction of the quality is also observed. Thus, drying is a method that lends itself to being intensified. For this reason, alternative techniques are being studied. Power ultrasound is considered as an emerging and promising technology in the food industry. The potential of this technology relies on its ability to accelerate the mass transfer processes in solid-liquid and solid-gas systems. Intensification of the drying process with power ultrasound can be achieved by modifying the product behavior during drying, using pre-treatments such as soaking in a liquid medium assisted acoustically or, during the drying process itself, by applying power ultrasound in the gaseous medium. This review summarises the effects of the application of the power ultrasound on the quality of different dried products, such as fruits and vegetables, when the acoustic energy is intended to intensify the drying process, either when the application is performed before pretreatment or during the drying process. (c) 2017 Society of Chemical IndustryWe thank Conselleria d'Agricultura, Medi Ambient i Territori and Fons de Garantia Agraria i Pesquera de les Illes Balears (FOGAIBA) and the Spanish Government (MEIC) for financial support (RTA2015-00060-C04, AIA01/15).Rogríguez, Ó.; Eim, VS.; Roselló Matas, C.; Femenía, A.; Carcel Carrión, JA.; Simal, S. (2018). Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality. Journal of the Science of Food and Agriculture. 98(5):1660-1673. https://doi.org/10.1002/jsfa.8673S16601673985Fernandes, F. A. N., Rodrigues, S., Cárcel, J. A., & García-Pérez, J. V. (2015). Ultrasound-Assisted Air-Drying of Apple (Malus domestica L.) and Its Effects on the Vitamin of the Dried Product. Food and Bioprocess Technology, 8(7), 1503-1511. doi:10.1007/s11947-015-1519-7Cárcel, J. A., García-Pérez, J. V., Riera, E., Rosselló, C., & Mulet, A. (2014). Drying Assisted by Power Ultrasound. Modern Drying Technology, 237-278. doi:10.1002/9783527631704.ch08Ozuna, C., Gómez Álvarez-Arenas, T., Riera, E., Cárcel, J. A., & Garcia-Perez, J. V. (2014). Influence of material structure on air-borne ultrasonic application in drying. Ultrasonics Sonochemistry, 21(3), 1235-1243. doi:10.1016/j.ultsonch.2013.12.015Venkatesh, M. S., & Raghavan, G. S. V. (2004). An Overview of Microwave Processing and Dielectric Properties of Agri-food Materials. Biosystems Engineering, 88(1), 1-18. doi:10.1016/j.biosystemseng.2004.01.007Feng, H., Yin, Y., & Tang, J. (2012). Microwave Drying of Food and Agricultural Materials: Basics and Heat and Mass Transfer Modeling. Food Engineering Reviews, 4(2), 89-106. doi:10.1007/s12393-012-9048-xOey, I., Lille, M., Van Loey, A., & Hendrickx, M. (2008). Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: a review. Trends in Food Science & Technology, 19(6), 320-328. doi:10.1016/j.tifs.2008.04.001Chen, D., Xi, H., Guo, X., Qin, Z., Pang, X., Hu, X., … Wu, J. (2013). Comparative study of quality of cloudy pomegranate juice treated by high hydrostatic pressure and high temperature short time. Innovative Food Science & Emerging Technologies, 19, 85-94. doi:10.1016/j.ifset.2013.03.003Ade-Omowaye, B. I. O., Angersbach, A., Taiwo, K. A., & Knorr, D. (2001). Use of pulsed electric field pre-treatment to improve dehydration characteristics of plant based foods. Trends in Food Science & Technology, 12(8), 285-295. doi:10.1016/s0924-2244(01)00095-4Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813-835. doi:10.1016/j.ultsonch.2010.11.023Fernandes, F. A. N., & Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: Dehydration of banana. Journal of Food Engineering, 82(2), 261-267. doi:10.1016/j.jfoodeng.2007.02.032Cárcel, J. A., García-Pérez, J. V., Benedito, J., & Mulet, A. (2012). Food process innovation through new technologies: Use of ultrasound. Journal of Food Engineering, 110(2), 200-207. doi:10.1016/j.jfoodeng.2011.05.038Fernandes, F. A. N., Linhares, F. E., & Rodrigues, S. (2008). Ultrasound as pre-treatment for drying of pineapple. Ultrasonics Sonochemistry, 15(6), 1049-1054. doi:10.1016/j.ultsonch.2008.03.009García-Pérez, J. V., Cárcel, J. A., Benedito, J., & Mulet, A. (2007). Power Ultrasound Mass Transfer Enhancement in Food Drying. Food and Bioproducts Processing, 85(3), 247-254. doi:10.1205/fbp07010Mason, T. J., Riera, E., Vercet, A., & Lopez-Buesa, P. (2005). Application of Ultrasound. Emerging Technologies for Food Processing, 323-351. doi:10.1016/b978-012676757-5/50015-3Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science & Technology, 21(7), 323-331. doi:10.1016/j.tifs.2010.04.003Pingret, D., Fabiano-Tixier, A.-S., & Chemat, F. (2013). Degradation during application of ultrasound in food processing: A review. Food Control, 31(2), 593-606. doi:10.1016/j.foodcont.2012.11.039Kek, S. P., Chin, N. L., & Yusof, Y. A. (2013). Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food and Bioproducts Processing, 91(4), 495-506. doi:10.1016/j.fbp.2013.05.003Ricce, C., Rojas, M. L., Miano, A. C., Siche, R., & Augusto, P. E. D. (2016). Ultrasound pre-treatment enhances the carrot drying and rehydration. Food Research International, 89, 701-708. doi:10.1016/j.foodres.2016.09.030Gamboa-Santos, J., Montilla, A., Soria, A. C., & Villamiel, M. (2012). Effects of conventional and ultrasound blanching on enzyme inactivation and carbohydrate content of carrots. European Food Research and Technology, 234(6), 1071-1079. doi:10.1007/s00217-012-1726-7Romero J., C. A., & Yépez V., B. D. (2015). Ultrasound as pretreatment to convective drying of Andean blackberry (Rubus glaucus Benth). Ultrasonics Sonochemistry, 22, 205-210. doi:10.1016/j.ultsonch.2014.06.011Santacatalina, J. V., Contreras, M., Simal, S., Cárcel, J. A., & Garcia-Perez, J. V. (2016). Impact of applied ultrasonic power on the low temperature drying of apple. Ultrasonics Sonochemistry, 28, 100-109. doi:10.1016/j.ultsonch.2015.06.027Rodríguez, Ó., Llabrés, P. J., Simal, S., Femenia, A., & Rosselló, C. (2014). Intensification of Predrying Treatments by Means of Ultrasonic Assistance: Effects on Water Mobility, PPO Activity, Microstructure, and Drying Kinetics of Apple. Food and Bioprocess Technology, 8(3), 503-515. doi:10.1007/s11947-014-1424-5Jambrak, A. R., Mason, T. J., Paniwnyk, L., & Lelas, V. (2007). Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering, 81(1), 88-97. doi:10.1016/j.jfoodeng.2006.10.009Fernandes, F. A. N., Gallão, M. I., & Rodrigues, S. (2008). Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration. LWT - Food Science and Technology, 41(4), 604-610. doi:10.1016/j.lwt.2007.05.007Beck, S. M., Sabarez, H., Gaukel, V., & Knoerzer, K. (2014). Enhancement of convective drying by application of airborne ultrasound – A response surface approach. Ultrasonics Sonochemistry, 21(6), 2144-2150. doi:10.1016/j.ultsonch.2014.02.013Yao, Y. (2016). Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration. Ultrasonics Sonochemistry, 31, 512-531. doi:10.1016/j.ultsonch.2016.01.039Oladejo, A. O., & Ma, H. (2016). Optimisation of ultrasound-assisted osmotic dehydration of sweet potato (Ipomea batatas) using response surface methodology. Journal of the Science of Food and Agriculture, 96(11), 3688-3693. doi:10.1002/jsfa.7552Fernandes, F. A. N., & Rodrigues, S. (2017). Osmotic Dehydration and Blanching. Ultrasound in Food Processing, 311-328. doi:10.1002/9781118964156.ch11Azoubel, P. M., Baima, M. do A. M., Amorim, M. da R., & Oliveira, S. S. B. (2010). Effect of ultrasound on banana cv Pacovan drying kinetics. Journal of Food Engineering, 97(2), 194-198. doi:10.1016/j.jfoodeng.2009.10.009Rodríguez, Ó., Gomes, W., Rodrigues, S., & Fernandes, F. A. N. (2017). Effect of acoustically assisted treatments on vitamins, antioxidant activity, organic acids and drying kinetics of pineapple. Ultrasonics Sonochemistry, 35, 92-102. doi:10.1016/j.ultsonch.2016.09.006Fijalkowska, A., Nowacka, M., Wiktor, A., Sledz, M., & Witrowa-Rajchert, D. (2015). Ultrasound as a Pretreatment Method to Improve Drying Kinetics and Sensory Properties of Dried Apple. Journal of Food Process Engineering, 39(3), 256-265. doi:10.1111/jfpe.12217Nowacka, M., Wiktor, A., Śledź, M., Jurek, N., & Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 113(3), 427-433. doi:10.1016/j.jfoodeng.2012.06.013Stojanovic, J., & Silva, J. L. (2007). Influence of osmotic concentration, continuous high frequency ultrasound and dehydration on antioxidants, colour and chemical properties of rabbiteye blueberries. Food Chemistry, 101(3), 898-906. doi:10.1016/j.foodchem.2006.02.044Siucińska, K., Mieszczakowska-Frąc, M., Połubok, A., & Konopacka, D. (2016). Effects of Ultrasound Assistance on Dehydration Processes and Bioactive Component Retention of Osmo-Dried Sour Cherries. Journal of Food Science, 81(7), C1654-C1661. doi:10.1111/1750-3841.13368Oliveira, F. I. P., Gallão, M. I., Rodrigues, S., & Fernandes, F. A. N. (2010). Dehydration of Malay Apple (Syzygium malaccense L.) Using Ultrasound as Pre-treatment. Food and Bioprocess Technology, 4(4), 610-615. doi:10.1007/s11947-010-0351-3Çakmak, R. Ş., Tekeoğlu, O., Bozkır, H., Ergün, A. R., & Baysal, T. (2016). Effects of electrical and sonication pretreatments on the drying rate and quality of mushrooms. LWT - Food Science and Technology, 69, 197-202. doi:10.1016/j.lwt.2016.01.032Azoubel, P. M., da Rocha Amorim, M., Oliveira, S. S. B., Maciel, M. I. S., & Rodrigues, J. D. (2015). Improvement of Water Transport and Carotenoid Retention During Drying of Papaya by Applying Ultrasonic Osmotic Pretreatment. Food Engineering Reviews, 7(2), 185-192. doi:10.1007/s12393-015-9120-4Mothibe, K. J., Zhang, M., Mujumdar, A. S., Wang, Y. C., & Cheng, X. (2014). Effects of Ultrasound and Microwave Pretreatments of Apple Before Spouted Bed Drying on Rate of Dehydration and Physical Properties. Drying Technology, 32(15), 1848-1856. doi:10.1080/07373937.2014.952381Rawson, A., Tiwari, B. K., Tuohy, M. G., O’Donnell, C. P., & Brunton, N. (2011). Effect of ultrasound and blanching pretreatments on polyacetylene and carotenoid content of hot air and freeze dried carrot discs. Ultrasonics Sonochemistry, 18(5), 1172-1179. doi:10.1016/j.ultsonch.2011.03.009Tao, Y., Wang, P., Wang, Y., Kadam, S. U., Han, Y., Wang, J., & Zhou, J. (2016). Power ultrasound as a pretreatment to convective drying of mulberry ( Morus alba L.) leaves: Impact on drying kinetics and selected quality properties. Ultrasonics Sonochemistry, 31, 310-318. doi:10.1016/j.ultsonch.2016.01.012Sledz, M., Wiktor, A., Rybak, K., Nowacka, M., & Witrowa-Rajchert, D. (2016). The impact of ultrasound and steam blanching pre-treatments on the drying kinetics, energy consumption and selected properties of parsley leaves. Applied Acoustics, 103, 148-156. doi:10.1016/j.apacoust.2015.05.006Dias da Silva, G., Barros, Z. M. P., de Medeiros, R. A. B., de Carvalho, C. B. O., Rupert Brandão, S. C., & Azoubel, P. M. (2016). Pretreatments for melon drying implementing ultrasound and vacuum. LWT, 74, 114-119. doi:10.1016/j.lwt.2016.07.039Cárcel, J. A., Benedito, J., Rosselló, C., & Mulet, A. (2007). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 78(2), 472-479. doi:10.1016/j.jfoodeng.2005.10.018Garcia-Noguera, J., Oliveira, F. I. P., Gallão, M. I., Weller, C. L., Rodrigues, S., & Fernandes, F. A. N. (2010). Ultrasound-Assisted Osmotic Dehydration of Strawberries: Effect of Pretreatment Time and Ultrasonic Frequency. Drying Technology, 28(2), 294-303. doi:10.1080/07373930903530402Kowalski, S. J., Szadzińska, J., & Pawłowski, A. (2015). Ultrasonic-Assisted Osmotic Dehydration of Carrot Followed by Convective Drying with Continuous and Intermittent Heating. Drying Technology, 33(13), 1570-1580. doi:10.1080/07373937.2015.1012265Fernandes, F. A. N., Gallão, M. I., & Rodrigues, S. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 90(2), 186-190. doi:10.1016/j.jfoodeng.2008.06.021Cárcel, J. A., García-Pérez, J. V., Riera, E., Rosselló, C., & Mulet, A. (2017). Ultrasonically Assisted Drying. Ultrasound in Food Processing, 371-391. doi:10.1002/9781118964156.ch14Gamboa-Santos, J., Montilla, A., Cárcel, J. A., Villamiel, M., & Garcia-Perez, J. V. (2014). Air-borne ultrasound application in the convective drying of strawberry. Journal of Food Engineering, 128, 132-139. doi:10.1016/j.jfoodeng.2013.12.021Kowalski, S. J., & Pawłowski, A. (2015). Intensification of apple drying due to ultrasound enhancement. Journal of Food Engineering, 156, 1-9. doi:10.1016/j.jfoodeng.2015.01.023Sabarez, H. T., Gallego-Juarez, J. A., & Riera, E. (2012). Ultrasonic-Assisted Convective Drying of Apple Slices. Drying Technology, 30(9), 989-997. doi:10.1080/07373937.2012.677083Cárcel, J. A., Garcia-Perez, J. V., Riera, E., & Mulet, A. (2011). Improvement of Convective Drying of Carrot by Applying Power Ultrasound—Influence of Mass Load Density. Drying Technology, 29(2), 174-182. doi:10.1080/07373937.2010.483032Gallego-Juarez, J. A. (2010). High-power ultrasonic processing: Recent developments and prospective advances. Physics Procedia, 3(1), 35-47. doi:10.1016/j.phpro.2010.01.006Gallego-Juárez, J. A., Riera, E., de la Fuente Blanco, S., Rodríguez-Corral, G., Acosta-Aparicio, V. M., & Blanco, A. (2007). Application of High-Power Ultrasound for Dehydration of Vegetables: Processes and Devices. Drying Technology, 25(11), 1893-1901. doi:10.1080/07373930701677371Frias, J., Peñas, E., Ullate, M., & Vidal-Valverde, C. (2010). Influence of Drying by Convective Air Dryer or Power Ultrasound on the Vitamin C and β-Carotene Content of Carrots. Journal of Agricultural and Food Chemistry, 58(19), 10539-10544. doi:10.1021/jf102797yKowalski, S. J., Pawłowski, A., Szadzińska, J., Łechtańska, J., & Stasiak, M. (2016). High power airborne ultrasound assist in combined drying of raspberries. Innovative Food Science & Emerging Technologies, 34, 225-233. doi:10.1016/j.ifset.2016.02.006Schössler, K., Thomas, T., & Knorr, D. (2012). Modification of cell structure and mass transfer in potato tissue by contact ultrasound. Food Research International, 49(1), 425-431. doi:10.1016/j.foodres.2012.07.027Schössler, K., Jäger, H., & Knorr, D. (2012). Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. Journal of Food Engineering, 108(1), 103-110. doi:10.1016/j.jfoodeng.2011.07.018Schössler, K., Jäger, H., & Knorr, D. (2012). Novel contact ultrasound system for the accelerated freeze-drying of vegetables. Innovative Food Science & Emerging Technologies, 16, 113-120. doi:10.1016/j.ifset.2012.05.010García-Pérez JV Carcel JA Mulet A Riera E Gallego-Juarez JA Ultrasonic drying for food preservation Power Ultrasonics Woodhead Publishing Oxford 875 910 2015Garcia-Perez, J. V., Carcel, J. A., Riera, E., Rosselló, C., & Mulet, A. (2012). Intensification of Low-Temperature Drying by Using Ultrasound. Drying Technology, 30(11-12), 1199-1208. doi:10.1080/07373937.2012.675533Rodríguez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & Rosselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21-29. doi:10.1016/j.jfoodeng.2014.01.001Santacatalina, J. V., Rodríguez, O., Simal, S., Cárcel, J. A., Mulet, A., & García-Pérez, J. V. (2014). Ultrasonically enhanced low-temperature drying of apple: Influence on drying kinetics and antioxidant potential. Journal of Food Engineering, 138, 35-44. doi:10.1016/j.jfoodeng.2014.04.003Ozuna, C., Cárcel, J. A., García-Pérez, J. V., & Mulet, A. (2011). Improvement of water transport mechanisms during potato drying by applying ultrasound. Journal of the Science of Food and Agriculture, 91(14), 2511-2517. doi:10.1002/jsfa.4344Fernandes, F. A. N., Rodrigues, S., García-Pérez, J. V., & Cárcel, J. A. (2015). Effects of ultrasound-assisted air-drying on vitamins and carotenoids of cherry tomatoes. Drying Technology, 34(8), 986-996. doi:10.1080/07373937.2015.1090445Garcia-Perez, J. V., Ortuño, C., Puig, A., Carcel, J. A., & Perez-Munuera, I. (2011). Enhancement of Water Transport and Microstructural Changes Induced by High-Intensity Ultrasound Application on Orange Peel Drying. Food and Bioprocess Technology, 5(6), 2256-2265. doi:10.1007/s11947-011-0645-0Puig, A., Perez-Munuera, I., Carcel, J. A., Hernando, I., & Garcia-Perez, J. V. (2012). Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying. Food and Bioproducts Processing, 90(4), 624-632. doi:10.1016/j.fbp.2012.07.001Cruz, L., Clemente, G., Mulet, A., Ahmad-Qasem, M. H., Barrajón-Catalán, E., & García-Pérez, J. V. (2016). Air-borne ultrasonic application in the drying of grape skin: Kinetic and quality considerations. Journal of Food Engineering, 168, 251-258. doi:10.1016/j.jfoodeng.2015.08.001Do Nascimento, E. M. G. C., Mulet, A., Ascheri, J. L. R., de Carvalho, C. W. P., & Cárcel, J. A. (2016). Effects of high-intensity ultrasound on drying kinetics and antioxidant properties of passion fruit peel. Journal of Food Engineering, 170, 108-118. doi:10.1016/j.jfoodeng.2015.09.015Szadzińska, J., Kowalski, S. J., & Stasiak, M. (2016). Microwave and ultrasound enhancement of convective drying of strawberries: Experimental and modeling efficiency. International Journal of Heat and Mass Transfer, 103, 1065-1074. doi:10.1016/j.ijheatmasstransfer.2016.08.001Szadzińska, J., Łechtańska, J., Kowalski, S. J., & Stasiak, M. (2017). The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper. Ultrasonics Sonochemistry, 34, 531-539. doi:10.1016/j.ultsonch.2016.06.030Fonteles, T. V., Leite, A. K. F., Silva, A. R. A., Carneiro, A. P. G., Miguel, E. de C., Cavada, B. S., … Rodrigues, S. (2016). Ultrasound processing to enhance drying of cashew apple bagasse puree: Influence on antioxidant properties and in vitro bioaccessibility of bioactive compounds. Ultrasonics Sonochemistry, 31, 237-249. doi:10.1016/j.ultsonch.2016.01.003Boukouvalas, C. J., Krokida, M. K., Maroulis, Z. B., & Marinos-Kouris, D. (2006). Density and Porosity: Literature Data Compilation for Foodstuffs. International Journal of Food Properties, 9(4), 715-746. doi:10.1080/10942910600575690Ozuna, C., Cárcel, J. A., Walde, P. M., & Garcia-Perez, J. V. (2014). Low-temperature drying of salted cod (Gadus morhua) assisted by high power ultrasound: Kinetics and physical properties. Innovative Food Science & Emerging Technologies, 23, 146-155. doi:10.1016/j.ifset.2014.03.008Chen, Z.-G., Guo, X.-Y., & Wu, T. (2016). A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods. Ultrasonics Sonochemistry, 30, 28-34. doi:10.1016/j.ultsonch.2015.11.026Santacatalina, J. V., Soriano, J. R., Cárcel, J. A., & Garcia-Perez, J. V. (2016). Influence of air velocity and temperature on ultrasonically assisted low temperature drying of eggplant. Food and Bioproducts Processing, 100, 282-291. doi:10.1016/j.fbp.2016.07.010Musielak, G., Mierzwa, D., & Kroehnke, J. (2016). Food drying enhancement by ultrasound – A review. Trends in Food Science & Technology, 56, 126-141. doi:10.1016/j.tifs.2016.08.003Kowalski, S. J., & Szadzińska, J. (2014). Convective-intermittent drying of cherries preceded by ultrasonic assisted osmotic dehydration. Chemical Engineering and Processing: Process Intensification, 82, 65-70. doi:10.1016/j.cep.2014.05.006Pérez-Jiménez, J., Díaz-Rubio, M. E., & Saura-Calixto, F. (2014). Non-Extractable Polyphenols in Plant Foods. Polyphenols in Plants, 203-218. doi:10.1016/b978-0-12-397934-6.00010-3Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2(4), 875-877. doi:10.1038/nprot.2007.102Gamboa-Santos, J., Soria, A. C., Villamiel, M., & Montilla, A.

    Effects of ultrasound-assisted air-drying on vitamins and carotenoids of cherry tomatoes

    Full text link
    [EN] This work examined the influence of the ultrasonic-assisted air-drying on the dehydration of cherry tomatoes (Solanum lycopersicum var. cerasiforme) and on the availability of vitamins B, E, and carotenoids in the dried product. This study allowed estimating the effective water diffusivity for the air-drying process and for the air-drying process subjected to ultrasonic waves. The water effective diffusivity increased by 33 89%, depending on the operating conditions, when subjected to ultrasound. The application of ultrasound increased the availability of vitamins B1, B2, B3, B6, and B5, releasing the vitamins bounded to membrane, protein, or apoenzyme. The use of ultrasound allowed the retention of carotenoids in the dried product when drying was carried out at a low temperature (45°C) and low air velocities (1 m/s).The authors thank the Brazilian funding agency CNPq and the Spanish Ministerio de Economia y Competitividad and ERDF for their financial support (Ref. DPI2013-37466-C03-03).Fernandes, FA.; Rodrigues, S.; García Pérez, JV.; Carcel Carrión, JA. (2016). Effects of ultrasound-assisted air-drying on vitamins and carotenoids of cherry tomatoes. Drying Technology. 34(8):986-996. https://doi.org/10.1080/07373937.2015.1090445S98699634

    Procedimiento y dispositivo para mejorar la transferencia de materia en procesos a baja temperatura mediante el uso de ultrasonidos de elevada intensidad.

    Get PDF
    La presente invención se refiere a un procedimiento para acelerar y mejorar la transferencia de al menos un solvente, ocluido en una matriz sólida o semisólida, a un medio gaseoso a una presión absoluta igual o superior a 0.5 atm y a una temperatura igual o inferior a 15ºC, caracterizado porque comprende la aplicación de un campo ultrasónico de elevada intensidad, igual o superior a 150 dB. Asimismo, es objeto de la invención el dispositivo para llevar a cabo dicho procedimiento y su uso en el campo agroalimentario, químico, cosmético y/o farmacéutico.Peer reviewedUniversidad Politécnica de Valencia, Centro de Transferencia Tecnológica, Consejo Superior de Investigaciones Científicas (España)A2 Solicitud de patente sin informe sobre el estado de la técnic

    Procedimiento y dispositivo para mejorar la transferenca de materia en procesos a baja temperatura mediante el uso de ultrasonidos de elevada intensidad

    Get PDF
    [EN] The invention relates to a method for obtaining a high-barrier multi-layer film that includes a) an inner layer that includes a polar substance and b) at least one coating that includes a substance that is hydrophobic and/or suitable as a barrier to water, characterized in that said method includes coating the inner layer a) with at least one coating b), using a spinning technique. The polar substance of the inner layer a) is preferably a substance suitable as a barrier to gases and/or vapors, and is sensitive to moisture. Likewise, the invention relates to the aforementioned multi-layer film, to a material including same and to various uses of the multi-layer film or the material.[ES] La presente invención se refiere a un procedimiento para acelerar y mejorar la transferencia de al menos un solvente, ocluido en una matríz sólida, semisólida o líquida, a un medio gaseoso a una presión absoluta igual o superior a 0.5 atm y a una temperatura igual o inferior a 15ºC, caracterizado porque comprende la aplicación de un campo ultrasónico de elevada intensidad, igual o superior a 150 dB. Asimismo, es objeto de la invención el dispositivo para llevar a cabo dicho procedimiento y su uso en el campo agroalimentario, químico, cosmético y/o farmacéutico.Peer reviewedConsejo Superior de Investigaciones Científicas (España), Universidad Politécnica de ValenciaA1 Solicitud de patente con informe sobre el estado de la técnic

    Drying and storage of olive leaf extracts. Influence on polyphenols stability

    Full text link
    [EN] There is an increasing demand for natural antioxidants in the food, cosmetics and pharmaceutical industries which has led to the search not only for natural extracts but also for strategies with which to increase long-term storage stability. The aim of this work was to assess the influence of the drying and storage of olive leaf extracts on the bioactive potential and stability of polyphenols. Olive leaves were hot air dried (120 degrees C) and freeze dried. Then the extracts were obtained by maceration (ethanol-water, 80:20, v/v). Afterwards, a part of the extracts was hot air dried at 120 degrees C and vacuum dehydrated at 55 degrees C. Thus, the extracts, in liquid and powder forms, were stored at 4, 25 and 35 degrees C for 4 weeks. During this period, the extracts were characterized by determining the antioxidant capacity (AC), the total phenolic content (TPC) and the concentration of the major phenolic compounds.The authors thank the Generalitat Valenciana (PROMETEOII/2014/005, PROMETEO/2012/007 and ACOMP/2013/93) for its financial support. M.H. Ahmad Qasem was the recipient of a fellowship from the Ministerio de Educacion, Cultura y Deporte of Spain (Programa de Formacion de Profesorado Universitario del Programa Nacional de Formacion de Recursos Humanos de Investigacion). This research has also been supported by the Ministerio de Ciencia e Innovacion (DPI2012-37466-C03-03, AGL2011-29857-C03-03 and AGL2015-67995-C3-1-R) and CIBERobn (CB12/03/30038, Fisiopatologia de la Obesidad y la Nutricion, CIBERobn, Instituto de Salud Carlos III).Ahmad-Qasem Mateo, MH.; Ahmad-Qasem, B.; Barrajon-Catalan, E.; Micol-Molina, V.; Carcel Carrión, JA.; García Pérez, JV. (2016). Drying and storage of olive leaf extracts. Influence on polyphenols stability. Industrial Crops and Products. 79:232-239. https://doi.org/10.1016/j.indcrop.2015.11.006S2322397
    corecore