41 research outputs found

    Rotation and twist regular modes for trapped ghosts

    Full text link
    A parameter-independent notion of stationary slow motion is formulated then applied to the case of stationary rotation of massless trapped ghosts. The excitations correspond to a rotation mode with angular momentum J≠0J\neq 0 and twist modes. It is found that the rotation mode, which has no parity, causes excess in the angular velocity of dragged distant coordinate frames in one sheet of the wormhole while in the other sheet the angular velocity of the ghosts is that of rotating stars: 2J/r32J/r^3. As to the twist modes, which all have parity, they cause excess in the angular velocity of one of the throat's poles with respect to the other.Comment: 11 pages, 3 figures; General Relativity and Gravitation - 201

    Gravity from the entropy of light

    Full text link
    The holographic principle, considered in a semiclassical setting, is shown to have direct consequences on physics at a fundamental level. In particular, a certain relation is pointed out to be the expression of holography in basic thermodynamics. It is argued moreover that through this relation holography can be recognized to induce gravity, and an expression for the gravitational lensing is obtained in terms of entropy over wavelength of black-body radiation, or, at a deeper level, in terms of maximum entropy over associated space to the elementary bit of information.Comment: 7 pages; v2: completion of the list of references; v3: the discussion is divided in Sections and the argument is described in more detail; v4: a statement is added (below eq.13) on what is the supposed difference between Jacobson's work in ref.21 and this attempt; addition of a paragraph in last Sectio

    A Note on Temperature and Energy of 4-dimensional Black Holes from Entropic Force

    Full text link
    We investigate the temperature and energy on holographic screens for 4-dimensional black holes with the entropic force idea proposed by Verlinde. We find that the "Unruh-Verlinde temperature" is equal to the Hawking temperature on the horizon and can be considered as a generalized Hawking temperature on the holographic screen outside the horizons. The energy on the holographic screen is not the black hole mass MM but the reduced mass M0M_0, which is related to the black hole parameters. With the replacement of the black hole mass MM by the reduced mass M0M_0, the entropic force can be written as F=GmM0r2F=\frac{GmM_0}{r^2}, which could be tested by experiments.Comment: V4: 13 pages, 4 figures, title changed, discussions for experiments added, accepted by CQ

    Quantum Einstein Gravity

    Full text link
    We give a pedagogical introduction to the basic ideas and concepts of the Asymptotic Safety program in Quantum Einstein Gravity. Using the continuum approach based upon the effective average action, we summarize the state of the art of the field with a particular focus on the evidence supporting the existence of the non-trivial renormalization group fixed point at the heart of the construction. As an application, the multifractal structure of the emerging space-times is discussed in detail. In particular, we compare the continuum prediction for their spectral dimension with Monte Carlo data from the Causal Dynamical Triangulation approach.Comment: 87 pages, 13 figures, review article prepared for the New Journal of Physics focus issue on Quantum Einstein Gravit

    Laplacians on discrete and quantum geometries

    Get PDF
    We extend discrete calculus for arbitrary (pp-form) fields on embedded lattices to abstract discrete geometries based on combinatorial complexes. We then provide a general definition of discrete Laplacian using both the primal cellular complex and its combinatorial dual. The precise implementation of geometric volume factors is not unique and, comparing the definition with a circumcentric and a barycentric dual, we argue that the latter is, in general, more appropriate because it induces a Laplacian with more desirable properties. We give the expression of the discrete Laplacian in several different sets of geometric variables, suitable for computations in different quantum gravity formalisms. Furthermore, we investigate the possibility of transforming from position to momentum space for scalar fields, thus setting the stage for the calculation of heat kernel and spectral dimension in discrete quantum geometries.Comment: 43 pages, 2 multiple figures. v2: discussion improved, references added, minor typos correcte

    Overview of physics results from NSTX

    Full text link

    Risk-Adapted Dose-Dense Immunochemotherapy Determined by Interim FDG-PET in Advanced-Stage Diffuse Large B-Cell Lymphoma

    No full text
    Purpose In studies of diffuse large B-cell lymphoma, positron emission tomography with [18F]fluorodeoxyglucose (FDG-PET) performed after two to four cycles of chemotherapy has demonstrated prognostic significance. However, some patients treated with immunochemotherapy experience a favorable long-term outcome despite a positive interim FDG-PET scan. To clarify the significance of interim FDG-PET scans, we prospectively studied interim FDG-positive disease within a risk-adapted sequential immunochemotherapy program. Patients and Methods From March 2002 to November 2006, 98 patients at Memorial Sloan-Kettering Cancer Center received induction therapy with four cycles of accelerated R-CHOP (rituximab + cyclophosphamide, doxorubicin, vincristine, and prednisone) followed by an interim FDG-PET scan. If the FDG-PET scan was negative, patients received three cycles of ICE (ifosfamide, carboplatin, and etoposide) consolidation therapy. If residual FDG-positive disease was seen, patients underwent biopsy; if the biopsy was negative, they also received three cycles of ICE. Patients with a positive biopsy received ICE followed by autologous stem-cell transplantation. Results At a median follow-up of 44 months, overall and progression-free survival were 90% and 79%, respectively. Ninety-seven patients underwent interim FDG-PET scans; 59 had a negative scan, 51 of whom are progression free. Thirty-eight patients with FDG-PET–positive disease underwent repeat biopsy; 33 were negative, and 26 remain progression free after ICE consolidation therapy. Progression-free survival of interim FDG-PET–positive/biopsy-negative patients was identical to that in patients with a negative interim FDG-PET scan (P = .27). Conclusion Interim or post-treatment FDG-PET evaluation did not predict outcome with this dose-dense, sequential immunochemotherapy program. Outside of a clinical trial, we recommend biopsy confirmation of an abnormal interim FDG-PET scan before changing therapy

    Low escape-rate genome safeguards with minimal molecular perturbation of Saccharomyces cerevisiae

    Get PDF
    As the use of synthetic biology both in industry and in academia grows, there is an increasing need to ensure biocontainment. There is growing interest in engineering bacterial- and yeast-based safeguard (SG) strains. First-generation SGs were based on metabolic auxotrophy; however, the risk of cross-feeding and the cost of growth-controlling nutrients led researchers to look for other avenues. Recent strategies include bacteria engineered to be dependent on nonnatural amino acids and yeast SG strains that have both transcriptional- and recombinational-based biocontainment. We describe improving yeast Saccharomyces cerevisiae-based transcriptional SG strains, which have near-WT fitness, the lowest possible escape rate, and nanomolar ligands controlling growth. We screened a library of essential genes, as well as the best-performing promoter and terminators, yielding the best SG strains in yeast. The best constructs were fine-tuned, resulting in two tightly controlled inducible systems. In addition, for potential use in the prevention of industrial espionage, we screened an array of possible "decoy molecules" that can be used to mask any proprietary supplement to the SG strain, with minimal effect on strain fitness
    corecore