6 research outputs found

    Intrinsic biocontainment: Multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes

    Get PDF
    Significance The advance of biotechnology opens up greater possibilities of bioterror and bioerror. Here, we propose multiplexed safeguard switches rooted in the development of foundational genomic, regulatory, and metabolic technologies. Safeguard switches can be regulated by submicromolar small molecule(s) and combined in a modular fashion. The resulting safeguard strains show high fitness and low reversion rates. Moreover, two distinct classes of safeguard switches are orthogonal, providing a potential fail-safe mechanism. The safeguard technologies provide a practical and generic approach to containing engineered microbes within defined laboratory and/or industrial environments, and can in principle be used in the field as well.</jats:p

    Low escape-rate genome safeguards with minimal molecular perturbation of Saccharomyces cerevisiae

    Get PDF
    As the use of synthetic biology both in industry and in academia grows, there is an increasing need to ensure biocontainment. There is growing interest in engineering bacterial- and yeast-based safeguard (SG) strains. First-generation SGs were based on metabolic auxotrophy; however, the risk of cross-feeding and the cost of growth-controlling nutrients led researchers to look for other avenues. Recent strategies include bacteria engineered to be dependent on nonnatural amino acids and yeast SG strains that have both transcriptional- and recombinational-based biocontainment. We describe improving yeast Saccharomyces cerevisiae-based transcriptional SG strains, which have near-WT fitness, the lowest possible escape rate, and nanomolar ligands controlling growth. We screened a library of essential genes, as well as the best-performing promoter and terminators, yielding the best SG strains in yeast. The best constructs were fine-tuned, resulting in two tightly controlled inducible systems. In addition, for potential use in the prevention of industrial espionage, we screened an array of possible "decoy molecules" that can be used to mask any proprietary supplement to the SG strain, with minimal effect on strain fitness

    Yeast Golden Gate (yGG) for the Efficient Assembly of <i>S. cerevisiae</i> Transcription Units

    No full text
    We have adapted the Golden Gate DNA assembly method to the assembly of transcription units (TUs) for the yeast Saccharomyces cerevisiae, in a method we call yeast Golden Gate (yGG). yGG allows for the easy assembly of TUs consisting of promoters (PRO), coding sequences (CDS), and terminators (TER). Carefully designed overhangs exposed by digestion with a type IIS restriction enzyme enable virtually seamless assembly of TUs that, in principle, contain all of the information necessary to express a gene of interest in yeast. We also describe a versatile set of yGG acceptor vectors to be used for TU assembly. These vectors can be used for low or high copy expression of assembled TUs or integration into carefully selected innocuous genomic loci. yGG provides synthetic biologists and yeast geneticists with an efficient new means by which to engineer S. cerevisiae. (Figure Presented)

    Total Synthesis of a Functional Designer Eukaryotic Chromosome

    No full text
    Designer Chromosome One of the ultimate aims of synthetic biology is to build designer organisms from the ground up. Rapid advances in DNA synthesis has allowed the assembly of complete bacterial genomes. Eukaryotic organisms, with their generally much larger and more complex genomes, present an additional challenge to synthetic biologists. Annaluru et al. (p. 55 , published online 27 March) designed a synthetic eukaryotic chromosome based on yeast chromosome III. The designer chromosome, shorn of destabilizing transfer RNA genes and transposons, is ∼14% smaller than its wild-type template and is fully functional with every gene tagged for easy removal. </jats:p
    corecore