28 research outputs found

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure

    Current approach to genetic testing and genetic evaluation referrals for adults with congenital heart disease

    Get PDF
    BackgroundCongenital heart disease (CHD) is the most common congenital anomaly. Up to 33% have an identifiable genetic etiology. Improved medical and surgical management of CHD has translated into longer life expectancy and a rapidly growing population of adults living with CHD. The adult CHD (ACHD) population did not have access during childhood to the genetic technologies available today and therefore have not had a robust genetic evaluation that is currently recommended for infants with CHD. Given this potential benefit; the aims of this study were to determine how ACHD cardiologists offer genetics services to patients and identify the indications that influence decision-making for genetics care.MethodsWe performed a descriptive cross-sectional study of ACHD cardiologists. A study-developed questionnaire was distributed via emailed REDCap link. The recruitment email was sent to 104 potential respondents. The survey was open from 06/2022 to 01/2023.ResultsThirty-five cardiologists participated in the study (response rate of 34%). Most cardiologists identified as white (77%) and male (66%). Cardiologists were more likely to refer patients to genetics (91%) than to order testing themselves (57%). Of the testing ordered, chromosomal testing (55%) was ordered more than gene sequencing (14%). Most cardiologists would refer a patient with a conotruncal lesion (interrupted aortic arch) over other indications for a genetics evaluation. There were more reported barriers to ordering genetic testing (66%) compared to referring to genetics for a genetics evaluation (23%). Cardiologists were more confident recognizing features suggestive of a genetic syndrome than ordering the correct test (p = 0.001). Regarding associations between clinical factors and current practices, more years in practice trended towards less referrals and testing. Evaluating a greater number of patients (p = 0.11) and greater confidence recognizing syndromic features (p = 0.12) and ordering the correct test (p = 0.09) were all associated with ordering more testing.ConclusionTesting for microdeletion syndromes is being offered and completed in the ACHD population, however testing for single-gene disorders associated with CHD is being under-utilized. Developing guidelines for genetic testing in adults with CHD could increase access to genetic services, impact medical management, reduce uncertainty regarding prognosis, and inform recurrence risk estimates

    Proceedings of the 3rd Biennial Conference of the Society for Implementation Research Collaboration (SIRC) 2015: advancing efficient methodologies through community partnerships and team science

    Get PDF
    It is well documented that the majority of adults, children and families in need of evidence-based behavioral health interventionsi do not receive them [1, 2] and that few robust empirically supported methods for implementing evidence-based practices (EBPs) exist. The Society for Implementation Research Collaboration (SIRC) represents a burgeoning effort to advance the innovation and rigor of implementation research and is uniquely focused on bringing together researchers and stakeholders committed to evaluating the implementation of complex evidence-based behavioral health interventions. Through its diverse activities and membership, SIRC aims to foster the promise of implementation research to better serve the behavioral health needs of the population by identifying rigorous, relevant, and efficient strategies that successfully transfer scientific evidence to clinical knowledge for use in real world settings [3]. SIRC began as a National Institute of Mental Health (NIMH)-funded conference series in 2010 (previously titled the “Seattle Implementation Research Conference”; $150,000 USD for 3 conferences in 2011, 2013, and 2015) with the recognition that there were multiple researchers and stakeholdersi working in parallel on innovative implementation science projects in behavioral health, but that formal channels for communicating and collaborating with one another were relatively unavailable. There was a significant need for a forum within which implementation researchers and stakeholders could learn from one another, refine approaches to science and practice, and develop an implementation research agenda using common measures, methods, and research principles to improve both the frequency and quality with which behavioral health treatment implementation is evaluated. SIRC’s membership growth is a testament to this identified need with more than 1000 members from 2011 to the present.ii SIRC’s primary objectives are to: (1) foster communication and collaboration across diverse groups, including implementation researchers, intermediariesi, as well as community stakeholders (SIRC uses the term “EBP champions” for these groups) – and to do so across multiple career levels (e.g., students, early career faculty, established investigators); and (2) enhance and disseminate rigorous measures and methodologies for implementing EBPs and evaluating EBP implementation efforts. These objectives are well aligned with Glasgow and colleagues’ [4] five core tenets deemed critical for advancing implementation science: collaboration, efficiency and speed, rigor and relevance, improved capacity, and cumulative knowledge. SIRC advances these objectives and tenets through in-person conferences, which bring together multidisciplinary implementation researchers and those implementing evidence-based behavioral health interventions in the community to share their work and create professional connections and collaborations
    corecore