97 research outputs found

    Terminating Wnt signals: a novel nuclear export mechanism targets activated β-catenin

    Get PDF
    Nuclear targeting of β-catenin is an obligatory step in Wnt signal transduction, but the factors that control import and export remain to be clarified. In this issue, Hendriksen et al. (p. 785) show that the RanBP3 export factor antagonizes β-catenin/T cell factor (TCF) transcription by targeting the signaling-competent form of β-catenin. We speculate that cells may use multiple export mechanisms to inhibit β-catenin signaling in different ways

    Distinct molecular forms of β-catenin are targeted to adhesive or transcriptional complexes

    Get PDF
    β-Catenin plays essential roles in both cell–cell adhesion and Wnt signal transduction, but what precisely controls β-catenin targeting to cadherin adhesive complexes, or T-cell factor (TCF)-transcriptional complexes is less well understood. We show that during Wnt signaling, a form of β-catenin is generated that binds TCF but not the cadherin cytoplasmic domain. The Wnt-stimulated, TCF-selective form is monomeric and is regulated by the COOH terminus of β-catenin, which selectively competes cadherin binding through an intramolecular fold-back mechanism. Phosphorylation of the cadherin reverses the TCF binding selectivity, suggesting another potential layer of regulation. In contrast, the main cadherin-binding form of β-catenin is a β-catenin–α-catenin dimer, indicating that there is a distinct molecular form of β-catenin that can interact with both the cadherin and α-catenin. We propose that participation of β-catenin in adhesion or Wnt signaling is dictated by the regulation of distinct molecular forms of β-catenin with different binding properties, rather than simple competition between cadherins and TCFs for a single constitutive form. This model explains how cells can control whether β-catenin is used independently in cell adhesion and nuclear signaling, or competitively so that the two processes are coordinated and interrelated

    β-Catenin Phosphorylated at Serine 45 Is Spatially Uncoupled from β-Catenin Phosphorylated in the GSK3 Domain: Implications for Signaling

    Get PDF
    C. elegans and Drosophila generate distinct signaling and adhesive forms of β-catenin at the level of gene expression. Whether vertebrates, which rely on a single β-catenin gene, generate unique adhesive and signaling forms at the level of protein modification remains unresolved. We show that β-catenin unphosphorylated at serine 37 (S37) and threonine 41 (T41), commonly referred to as transcriptionally Active β-Catenin (ABC), is a minor nuclear-enriched monomeric form of β-catenin in SW480 cells, which express low levels of E-cadherin. Despite earlier indications, the superior signaling activity of ABC is not due to reduced cadherin binding, as ABC is readily incorporated into cadherin contacts in E-cadherin-restored cells. β-catenin phosphorylated at serine 45 (S45) or threonine 41 (T41) (T41/S45) or along the GSK3 regulatory cassette S33, S37 or T41 (S33/37/T41), however, is largely unable to associate with cadherins. β-catenin phosphorylated at T41/S45 and unphosphorylated at S37 and T41 is predominantly nuclear, while β-catenin phosphorylated at S33/37/T41 is mostly cytoplasmic, suggesting that β-catenin hypophosphorylated at S37 and T41 may be more active in transcription due to its enhanced nuclear accumulation. Evidence that phosphorylation at T41/S45 can be spatially separated from phosphorylations at S33/37/T41 suggests that these phosphorylations may not always be coupled, raising the possibility that phosphorylation at S45 serves a distinct nuclear function

    Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: A novel mouse model for scleroderma?

    Full text link
    Objective Because aberrant Wnt signaling has been linked with systemic sclerosis (SSc) and pulmonary fibrosis, we sought to investigate the effect of Wnt‐10b on skin homeostasis and differentiation in transgenic mice and in explanted mesenchymal cells. Methods The expression of Wnt‐10b in patients with SSc and in a mouse model of fibrosis was investigated. The skin phenotype and biochemical characteristics of Wnt‐10b–transgenic mice were evaluated. The in vitro effects of ectopic Wnt‐10b were examined in explanted skin fibroblasts and preadipocytes. Results The expression of Wnt‐10b was increased in lesional skin biopsy specimens from patients with SSc and in those obtained from mice with bleomycin‐induced fibrosis. Transgenic mice expressing Wnt‐10b showed progressive loss of subcutaneous adipose tissue accompanied by dermal fibrosis, increased collagen deposition, fibroblast activation, and myofibroblast accumulation. Wnt activity correlated with collagen gene expression in these biopsy specimens. Explanted skin fibroblasts from transgenic mice demonstrated persistent Wnt/β‐catenin signaling and elevated collagen and α‐smooth muscle actin gene expression. Wnt‐10b infection of normal fibroblasts and preadipocytes resulted in blockade of adipogenesis and transforming growth factor β (TGFβ)–independent up‐regulation of fibrotic gene expression. Conclusion SSc is associated with increased Wnt‐10b expression in the skin. Ectopic Wnt‐10b causes loss of subcutaneous adipose tissue and TGFβ‐independent dermal fibrosis in transgenic mice. These findings suggest that Wnt‐10b switches differentiation of mesenchymal cells toward myofibroblasts by inducing a fibrogenic transcriptional program while suppressing adipogenesis. Wnt‐10b–transgenic mice represent a novel animal model for investigating Wnt signaling in the setting of fibrosis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86862/1/30312_ftp.pd

    αT-catenin in restricted brain cell types and its potential connection to autism

    Get PDF
    BACKGROUND: Recent genetic association studies have linked the cadherin-based adherens junction protein alpha-T-catenin (αT-cat, CTNNA3) with the development of autism. Where αT-cat is expressed in the brain, and how its loss could contribute to this disorder, are entirely unknown. METHODS: We used the αT-cat knockout mouse to examine the localization of αT-cat in the brain, and we used histology and immunofluorescence analysis to examine the neurobiological consequences of its loss. RESULTS: We found that αT-cat comprises the ependymal cell junctions of the ventricles of the brain, and its loss led to compensatory upregulation of αE-cat expression. Notably, αT-cat was not detected within the choroid plexus, which relies on cell junction components common to typical epithelial cells. While αT-cat was not detected in neurons of the cerebral cortex, it was abundantly detected within neuronal structures of the molecular layer of the cerebellum. Although αT-cat loss led to no overt differences in cerebral or cerebellar structure, RNA-sequencing analysis from wild type versus knockout cerebella identified a number of disease-relevant signaling pathways associated with αT-cat loss, such as GABA-A receptor activation. CONCLUSIONS: These findings raise the possibility that the genetic associations between αT-cat and autism may be due to ependymal and cerebellar defects, and highlight the potential importance of a seemingly redundant adherens junction component to a neurological disorder

    Activity of the β-catenin phosphodestruction complex at cell–cell contacts is enhanced by cadherin-based adhesion

    Get PDF
    It is well established that cadherin protein levels impact canonical Wnt signaling through binding and sequestering β-catenin (β-cat) from T-cell factor family transcription factors. Whether changes in intercellular adhesion can affect β-cat signaling and the mechanism through which this occurs has remained unresolved. We show that axin, APC2, GSK-3β and N-terminally phosphorylated forms of β-cat can localize to cell–cell contacts in a complex that is molecularly distinct from the cadherin–catenin adhesive complex. Nonetheless, cadherins can promote the N-terminal phosphorylation of β-cat, and cell–cell adhesion increases the turnover of cytosolic β-cat. Together, these data suggest that cadherin-based cell–cell adhesion limits Wnt signals by promoting the activity of a junction-localized β-cat phosphodestruction complex, which may be relevant to tissue morphogenesis and cell fate decisions during development

    Force-dependent allostery of the α-catenin actinbinding domain controls adherens junction dynamics and functions

    Get PDF
    α-catenin is a key mechanosensor that forms force-dependent interactions with F-actin, thereby coupling the cadherin-catenin complex to the actin cytoskeleton at adherens junctions (AJs). However, the molecular mechanisms by which α-catenin engages F-actin under tension remained elusive. Here we show that the α1-helix of the α-catenin actin-binding domain (αcat-ABD) is a mechanosensing motif that regulates tension-dependent F-actin binding and bundling. αcat-ABD containing an α1-helix-unfolding mutation (H1) shows enhanced binding to F-actin in vitro. Although full-length α-catenin-H1 can generate epithelial monolayers that resist mechanical disruption, it fails to support normal AJ regulation in vivo. Structural and simulation analyses suggest that α1-helix allosterically controls the actin-binding residue V796 dynamics. Crystal structures of αcat-ABD-H1 homodimer suggest that α-catenin can facilitate actin bundling while it remains bound to E-cadherin. We propose that force-dependent allosteric regulation of αcat-ABD promotes dynamic interactions with F-actin involved in actin bundling, cadherin clustering, and AJ remodeling during tissue morphogenesis

    The Epigenetic Modifier PRDM5 Functions as a Tumor Suppressor through Modulating WNT/β-Catenin Signaling and Is Frequently Silenced in Multiple Tumors

    Get PDF
    BACKGROUND: PRDM (PRDI-BF1 and RIZ domain containing) proteins are zinc finger proteins involved in multiple cellular regulations by acting as epigenetic modifiers. We studied a recently identified PRDM member PRDM5 for its epigenetic abnormality and tumor suppressive functions in multiple tumorigeneses. METHODOLOGY/PRINCIPAL FINDINGS: Semi-quantitative RT-PCR showed that PRDM5 was broadly expressed in human normal tissues, but frequently silenced or downregulated in multiple carcinoma cell lines due to promoter CpG methylation, including 80% (4/5) nasopharyngeal, 44% (8/18) esophageal, 76% (13/17) gastric, 50% (2/4) cervical, and 25% (3/12) hepatocellular carcinoma cell lines, but not in any immortalized normal epithelial cell lines. PRDM5 expression could be restored by 5-aza-2'-deoxycytidine demethylation treatment in silenced cell lines. PRDM5 methylation was frequently detected by methylation-specific PCR (MSP) in multiple primary tumors, including 93% (43/46) nasopharyngeal, 58% (25/43) esophageal, 88% (37/42) gastric and 63% (29/46) hepatocellular tumors. PRDM5 was further found a stress-responsive gene, but its response was impaired when the promoter was methylated. Ectopic PRDM5 expression significantly inhibited tumor cell clonogenicity, accompanied by the inhibition of TCF/β-catenin-dependent transcription and downregulation of CDK4, TWIST1 and MDM2 oncogenes, while knocking down of PRDM5 expression lead to increased cell proliferation. ChIP assay showed that PRDM5 bound to its target gene promoters and suppressed their transcription. An inverse correlation between the expression of PRDM5 and activated β-catenin was also observed in cell lines. CONCLUSIONS/SIGNIFICANCE: PRDM5 functions as a tumor suppressor at least partially through antagonizing aberrant WNT/β-catenin signaling and oncogene expression. Frequent epigenetic silencing of PRDM5 is involved in multiple tumorigeneses, which could serve as a tumor biomarker

    DRhoGEF2 Regulates Cellular Tension and Cell Pulsations in the Amnioserosa during Drosophila Dorsal Closure

    Get PDF
    Coordination of apical constriction in epithelial sheets is a fundamental process during embryogenesis. Here, we show that DRhoGEF2 is a key regulator of apical pulsation and constriction of amnioserosal cells during Drosophila dorsal closure. Amnioserosal cells mutant for DRhoGEF2 exhibit a consistent decrease in amnioserosa pulsations whereas overexpression of DRhoGEF2 in this tissue leads to an increase in the contraction time of pulsations. We probed the physical properties of the amnioserosa to show that the average tension in DRhoGEF2 mutant cells is lower than wild-type and that overexpression of DRhoGEF2 results in a tissue that is more solid-like than wild-type. We also observe that in the DRhoGEF2 overexpressing cells there is a dramatic increase of apical actomyosin coalescence that can contribute to the generation of more contractile forces, leading to amnioserosal cells with smaller apical surface than wild-type. Conversely, in DRhoGEF2 mutants, the apical actomyosin coalescence is impaired. These results identify DRhoGEF2 as an upstream regulator of the actomyosin contractile machinery that drives amnioserosa cells pulsations and apical constriction
    corecore