3,293 research outputs found
Multiclass latent locally linear support vector machines
Kernelized Support Vector Machines (SVM) have gained the status of off-the-shelf classifiers, able to deliver state of the art performance on almost any problem. Still, their practical use is constrained by their computational and memory complexity, which grows super-linearly with the number of training samples. In order to retain the low training and testing complexity of linear classifiers and the exibility of non linear ones, a growing, promising alternative is represented by methods that learn non-linear classifiers through local combinations of linear ones. In this paper we propose a new multi class local classifier, based on a latent SVM formulation. The proposed classifier makes use of a set of linear models that are linearly combined using sample and class specific weights. Thanks to the latent formulation, the combination coefficients are modeled as latent variables. We allow soft combinations and we provide a closed-form solution for their estimation, resulting in an efficient prediction rule. This novel formulation allows to learn in a principled way the sample specific weights and the linear classifiers, in a unique optimization problem, using a CCCP optimization procedure. Extensive experiments on ten standard UCI machine learning datasets, one large binary dataset, three character and digit recognition databases, and a visual place categorization dataset show the power of the proposed approach
Scalable Greedy Algorithms for Transfer Learning
In this paper we consider the binary transfer learning problem, focusing on
how to select and combine sources from a large pool to yield a good performance
on a target task. Constraining our scenario to real world, we do not assume the
direct access to the source data, but rather we employ the source hypotheses
trained from them. We propose an efficient algorithm that selects relevant
source hypotheses and feature dimensions simultaneously, building on the
literature on the best subset selection problem. Our algorithm achieves
state-of-the-art results on three computer vision datasets, substantially
outperforming both transfer learning and popular feature selection baselines in
a small-sample setting. We also present a randomized variant that achieves the
same results with the computational cost independent from the number of source
hypotheses and feature dimensions. Also, we theoretically prove that, under
reasonable assumptions on the source hypotheses, our algorithm can learn
effectively from few examples
Towards a quantitative measure of rareness
Within the context of detection of incongruent events, an often overlooked aspect is how a system should react to the detection. The set of all the possible actions is certainly conditioned by the task at hand, and by the embodiment of the artificial cognitive system under consideration. Still, we argue that a desirable action that does not depend from these factors is to update the internal model and learn the new detected event. This paper proposes a recent transfer learning algorithm as the way to address this issue. A notable feature of the proposed model is its capability to learn from small samples, even a single one. This is very desirable in this context, as we cannot expect to have too many samples to learn from, given the very nature of incongruent events. We also show that one of the internal parameters of the algorithm makes it possible to quantitatively measure incongruence of detected events. Experiments on two different datasets support our claim
Adaptive Deep Learning through Visual Domain Localization
A commercial robot, trained by its manufacturer to recognize a predefined number and type of objects, might be used in many settings, that will in general differ in their illumination conditions, background, type and degree of clutter, and so on. Recent computer vision works tackle this generalization issue through domain adaptation methods, assuming as source the visual domain where the system is trained and as target the domain of deployment. All approaches assume to have access to images from all classes of the target during training, an unrealistic condition in robotics applications. We address this issue proposing an algorithm that takes into account the specific needs of robot vision. Our intuition is that the nature of the domain shift experienced mostly in robotics is local. We exploit this through the learning of maps that spatially ground the domain and quantify the degree of shift, embedded into an end-to-end deep domain adaptation architecture. By explicitly localizing the roots of the domain shift we significantly reduce the number of parameters of the architecture to tune, we gain the flexibility necessary to deal with subset of categories in the target domain at training time, and we provide a clear feedback on the rationale behind any classification decision, which can be exploited in human-robot interactions. Experiments on two different settings of the iCub World database confirm the suitability of our method for robot vision
Learning Deep NBNN Representations for Robust Place Categorization
This paper presents an approach for semantic place categorization using data
obtained from RGB cameras. Previous studies on visual place recognition and
classification have shown that, by considering features derived from
pre-trained Convolutional Neural Networks (CNNs) in combination with part-based
classification models, high recognition accuracy can be achieved, even in
presence of occlusions and severe viewpoint changes. Inspired by these works,
we propose to exploit local deep representations, representing images as set of
regions applying a Na\"{i}ve Bayes Nearest Neighbor (NBNN) model for image
classification. As opposed to previous methods where CNNs are merely used as
feature extractors, our approach seamlessly integrates the NBNN model into a
fully-convolutional neural network. Experimental results show that the proposed
algorithm outperforms previous methods based on pre-trained CNN models and
that, when employed in challenging robot place recognition tasks, it is robust
to occlusions, environmental and sensor changes
From source to target and back: symmetric bi-directional adaptive GAN
The effectiveness of generative adversarial approaches in producing images
according to a specific style or visual domain has recently opened new
directions to solve the unsupervised domain adaptation problem. It has been
shown that source labeled images can be modified to mimic target samples making
it possible to train directly a classifier in the target domain, despite the
original lack of annotated data. Inverse mappings from the target to the source
domain have also been evaluated but only passing through adapted feature
spaces, thus without new image generation. In this paper we propose to better
exploit the potential of generative adversarial networks for adaptation by
introducing a novel symmetric mapping among domains. We jointly optimize
bi-directional image transformations combining them with target self-labeling.
Moreover we define a new class consistency loss that aligns the generators in
the two directions imposing to conserve the class identity of an image passing
through both domain mappings. A detailed qualitative and quantitative analysis
of the reconstructed images confirm the power of our approach. By integrating
the two domain specific classifiers obtained with our bi-directional network we
exceed previous state-of-the-art unsupervised adaptation results on four
different benchmark datasets
Robust Place Categorization With Deep Domain Generalization
Traditional place categorization approaches in robot vision assume that training and test images have similar visual appearance. Therefore, any seasonal, illumination, and environmental changes typically lead to severe degradation in performance. To cope with this problem, recent works have been proposed to adopt domain adaptation techniques. While effective, these methods assume that some prior information about the scenario where the robot will operate is available at training time. Unfortunately, in many cases, this assumption does not hold, as we often do not know where a robot will be deployed. To overcome this issue, in this paper, we present an approach that aims at learning classification models able to generalize to unseen scenarios. Specifically, we propose a novel deep learning framework for domain generalization. Our method develops from the intuition that, given a set of different classification models associated to known domains (e.g., corresponding to multiple environments, robots), the best model for a new sample in the novel domain can be computed directly at test time by optimally combining the known models. To implement our idea, we exploit recent advances in deep domain adaptation and design a convolutional neural network architecture with novel layers performing a weighted version of batch normalization. Our experiments, conducted on three common datasets for robot place categorization, confirm the validity of our contribution
Adaptive learning to speed-up control of prosthetic hands: A few things everybody should know
Domain adaptation methods have been proposed to reduce the training efforts needed to control an upper-limb prosthesis by adapting well performing models from previous subjects to the new subject. These studies generally reported impressive reductions in the required number of training samples to achieve a certain level of accuracy for intact subjects. We further investigate two popular methods in this field to verify whether this result also applies to amputees. Our findings show instead that this improvement can largely be attributed to a suboptimal hyperparameter configuration. When hyperparameters are appropriately tuned, the standard approach that does not exploit prior information performs on par with the more complicated transfer learning algorithms. Additionally, earlier studies erroneously assumed that the number of training samples relates proportionally to the efforts required from the subject. However, a repetition of a movement is the atomic unit for subjects and the total number of repetitions should therefore be used as reliable measure for training efforts. Also when correcting for this mistake, we do not find any performance increase due to the use of prior models
AdaGraph: Unifying Predictive and Continuous Domain Adaptation through Graphs
The ability to categorize is a cornerstone of visual intelligence, and a key
functionality for artificial, autonomous visual machines. This problem will
never be solved without algorithms able to adapt and generalize across visual
domains. Within the context of domain adaptation and generalization, this paper
focuses on the predictive domain adaptation scenario, namely the case where no
target data are available and the system has to learn to generalize from
annotated source images plus unlabeled samples with associated metadata from
auxiliary domains. Our contributionis the first deep architecture that tackles
predictive domainadaptation, able to leverage over the information broughtby
the auxiliary domains through a graph. Moreover, we present a simple yet
effective strategy that allows us to take advantage of the incoming target data
at test time, in a continuous domain adaptation scenario. Experiments on three
benchmark databases support the value of our approach.Comment: CVPR 2019 (oral
- …
