11,938 research outputs found
Fractional Fokker-Planck Equation for Ultraslow Kinetics
Several classes of physical systems exhibit ultraslow diffusion for which the
mean squared displacement at long times grows as a power of the logarithm of
time ("strong anomaly") and share the interesting property that the probability
distribution of particle's position at long times is a double-sided
exponential. We show that such behaviors can be adequately described by a
distributed-order fractional Fokker-Planck equations with a power-law
weighting-function. We discuss the equations and the properties of their
solutions, and connect this description with a scheme based on continuous-time
random walks
Detecting the Stimulated Decay of Axions at Radio Frequencies
Assuming axion-like particles account for the entirety of the dark matter in
the Universe, we study the possibility of detecting their decay into photons at
radio frequencies. We discuss different astrophysical targets, such as dwarf
spheroidal galaxies, the Galactic Center and halo, and galaxy clusters. The
presence of an ambient radiation field leads to a stimulated enhancement of the
decay rate; depending on the environment and the mass of the axion, the effect
of stimulated emission may amplify the photon flux by serval orders of
magnitude. For axion-photon couplings allowed by astrophysical and laboratory
constraints(and possibly favored by stellar cooling), we find the signal to be
within the reach of next-generation radio telescopes such as the Square
Kilometer Array.Comment: Minor changes, references added, matches published versio
From Diffusion to Anomalous Diffusion: A Century after Einstein's Brownian Motion
Einstein's explanation of Brownian motion provided one of the cornerstones
which underlie the modern approaches to stochastic processes. His approach is
based on a random walk picture and is valid for Markovian processes lacking
long-term memory. The coarse-grained behavior of such processes is described by
the diffusion equation. However, many natural processes do not possess the
Markovian property and exhibit to anomalous diffusion. We consider here the
case of subdiffusive processes, which are semi-Markovian and correspond to
continuous-time random walks in which the waiting time for a step is given by a
probability distribution with a diverging mean value. Such a process can be
considered as a process subordinated to normal diffusion under operational time
which depends on this pathological waiting-time distribution. We derive two
different but equivalent forms of kinetic equations, which reduce to know
fractional diffusion or Fokker-Planck equations for waiting-time distributions
following a power-law. For waiting time distributions which are not pure power
laws one or the other form of the kinetic equation is advantageous, depending
on whether the process slows down or accelerates in the course of time
The seesaw path to leptonic CP violation
Future experiments such as SHiP and high-intensity colliders will
have a superb sensitivity to heavy Majorana neutrinos with masses below .
We show that the measurement of the mixing to electrons and muons of one such
state could imply the discovery of leptonic CP violation in the context of
seesaw models. We quantify in the minimal model the CP discovery potential of
these future experiments, and demonstrate that a 5 CL discovery of
leptonic CP violation would be possible in a very significant fraction of
parameter space.Comment: An error has been fixed, main conclusions unchange
On Myosin II dynamics in the presence of external loads
We address the controversial hot question concerning the validity of the
loose coupling versus the lever-arm theories in the actomyosin dynamics by
re-interpreting and extending the phenomenological washboard potential model
proposed by some of us in a previous paper. In this new model a Brownian motion
harnessing thermal energy is assumed to co-exist with the deterministic swing
of the lever-arm, to yield an excellent fit of the set of data obtained by some
of us on the sliding of Myosin II heads on immobilized actin filaments under
various load conditions. Our theoretical arguments are complemented by accurate
numerical simulations, and the robustness of the model is tested via different
choices of parameters and potential profiles.Comment: 6 figures, 8 tables, to appear on Biosystem
Analyzing real options and flexibility in engineering systems design using decision rules and deep reinforcement learning
Engineering systems provide essential services to society e.g., power generation, transportation. Their performance, however, is directly affected by their ability to cope with uncertainty, especially given the realities of climate change and pandemics. Standard design methods often fail to recognize uncertainty in early conceptual activities, leading to rigid systems that are vulnerable to change. Real Options and Flexibility in Design are important paradigms to improve a system’s ability to adapt and respond to unforeseen conditions. Existing approaches to analyze flexibility, however, do not leverage sufficiently recent developments in machine learning enabling deeper exploration of the computational design space. There is untapped potential for new solutions that are not readily accessible using existing methods. Here, a novel approach to analyze flexibility is proposed based on Deep Reinforcement Learning (DRL). It explores available datasets systematically and considers a wider range of adaptability strategies. The methodology is evaluated on an example waste-toenergy system. Low and high flexibility DRL models are compared against stochastically optimal inflexible and flexible solutions using decision rules. The results show highly dynamic solutions, with action space parametrized via artificial neural network. They show improved expected economic value up to 69% compared to previous solutions. Combining information from action space probability distributions along expert insights and risk tolerance helps make better decisions in real-world design and system operations. Out of sample testing shows that the policies are generalizable, but subject to tradeoffs between flexibility and inherent limitations of the learning process
Pulsation Period Changes as a Tool to Identify Pre-Zero Age Horizontal Branch Stars
One of the most dramatic events in the life of a low-mass star is the He
flash, which takes place at the tip of the red giant branch (RGB) and is
followed by a series of secondary flashes before the star settles into the
zero-age horizontal branch (ZAHB). Yet, no stars have been positively
identified in this key evolutionary phase, mainly for two reasons: first, this
pre-ZAHB phase is very short compared to other major evolutionary phases in the
life of a star; and second, these pre-ZAHB stars are expected to overlap the
loci occupied by asymptotic giant branch (AGB), HB and RGB stars observed in
the color-magnitude diagram (CMD). We investigate the possibility of detecting
these stars through stellar pulsations, since some of them are expected to
rapidly cross the Cepheid/RR Lyrae instability strip in their route from the
RGB tip to the ZAHB, thus becoming pulsating stars along the way. As a
consequence of their very high evolutionary speed, some of these stars may
present anomalously large period change rates. We constructed an extensive grid
of stellar models and produced pre-ZAHB Monte Carlo simulations appropriate for
the case of the Galactic globular cluster M3 (NGC 5272), where a number of RR
Lyrae stars with high period change rates are found. Our results suggest that
some -- but certainly not all -- of the RR Lyrae stars in M3 with large period
change rates are in fact pre-ZAHB pulsators.Comment: Conference Proceedings HELAS Workshop on 'Synergies between solar and
stellar modelling', Rome, June 2009, Astrophys. Space Sci., in the pres
Age, Metallicity, and the Distance to the Magellanic Clouds From Red Clump Stars
We show that the luminosity dependence of the red clump stars on age and
metallicity can cause a difference of up to < ~0.6 mag in the mean absolute I
magnitude of the red clump between different stellar populations. We show that
this effect may resolve the apparent ~0.4 mag discrepancy between red
clump-derived distance moduli to the Magellanic Clouds and those from, e.g.,
Cepheid variables. Taking into account the population effects on red clump
luminosity, we determine a distance modulus to the LMC of 18.36 +/- 0.17 mag,
and to the SMC of 18.82 +/- 0.20 mag. Our alternate red clump LMC distance is
consistent with the value (m-M){LMC} = 18.50 +/- 0.10 adopted by the HST
Cepheid Key Project. We briefly examine model predictions of red clump
luminosity, and find that variations in helium abundance and core mass could
bring the Clouds closer by some 0.10--0.15 mag, but not by the ~0.4 mag that
would result from setting the mean absolute I-magnitude of the Cloud red clumps
equal to the that of the Solar neighborhood red clump.Comment: Accepted for publication in The Astrophysical Journal Letters, AASTeX
4.0, 10 pages, 1 postscript figur
- …