72 research outputs found

    Navigation/traffic control satellite mission study. Volume 3 - System concepts

    Get PDF
    Satellite network for air traffic control, solar flare warning, and collision avoidanc

    Efficiency Potential and Voltage Loss of Inorganic CsPbI2Br Perovskite Solar Cells

    Get PDF
    Inorganic perovskite solar cells show excellent thermal stability, but the reported power conversion efficiencies are still lower than for organic inorganic perovskites. This is mainly caused by lower open circuit voltages VOCs . Herein, the reasons for the low VOC in inorganic CsPbI2Br perovskite solar cells are investigated. Intensity dependent photoluminescence measurements for different layer stacks reveal that n i p and p i n CsPbI2Br solar cells exhibit a strong mismatch between quasi Fermi level splitting QFLS and VOC. Specifically, the CsPbI2Br p i n perovskite solar cell has a QFLS e amp; 8201; VOC mismatch of 179 amp; 8201;meV, compared with 11 amp; 8201;meV for a reference cell with an organic inorganic perovskite of similar bandgap. On the other hand, this study shows that the CsPbI2Br films with a bandgap of 1.9 amp; 8201;eV have a very low defect density, resulting in an efficiency potential of 20.3 with a MeO 2PACz hole transporting layer and 20.8 on compact TiO2. Using ultraviolet photoelectron spectroscopy measurements, energy level misalignment is identified as a possible reason for the QFLS e amp; 8201; VOC mismatch and strategies for overcoming this VOC limitation are discussed. This work highlights the need to control the interfacial energetics in inorganic perovskite solar cells, but also gives promise for high efficiencies once this issue is resolve

    Perfluorinated Self Assembled Monolayers Enhance the Stability and Efficiency of Inverted Perovskite Solar Cells

    Get PDF
    Perovskite solar cells are among the most exciting photovoltaic systems as they combine low recombination losses, ease of fabrication, and high spectral tunability. The Achilles heel of this technology is the device stability due to the ionic nature of the perovskite crystal, rendering it highly hygroscopic, and the extensive diffusion of ions especially at increased temperatures. Herein, we demonstrate the application of a simple solution-processed perfluorinated self-assembled monolayer (p-SAM) that not only enhances the solar cell efficiency, but also improves the stability of the perovskite absorber and, in turn, the solar cell under increased temperature or humid conditions. The p-i-n-type perovskite devices employing these SAMs exhibited power conversion efficiencies surpassing 21%. Notably, the best performing devices are stable under standardized maximum power point operation at 85 °C in inert atmosphere (ISOS-L-2) for more than 250 h and exhibit superior humidity resilience, maintaining ∼95% device performance even if stored in humid air in ambient conditions over months (∼3000 h, ISOS-D-1). Our work, therefore, demonstrates a strategy towards efficient and stable perovskite solar cells with easily deposited functional interlayers
    corecore