1,798 research outputs found
Emergence of rotational bands in ab initio no-core configuration interaction calculations of light nuclei
The emergence of rotational bands is observed in no-core configuration
interaction (NCCI) calculations for the odd-mass Be isotopes (7<=A<=13) with
the JISP16 nucleon-nucleon interaction, as evidenced by rotational patterns for
excitation energies, quadrupole moments, and E2 transitions. Yrast and
low-lying excited bands are found. The results demonstrate the possibility of
well-developed rotational structure in NCCI calculations using a realistic
nucleon-nucleon interaction.Comment: 7 pages, 6 figures; to be published in Phys. Lett.
The no-core shell model with general radial bases
Calculations in the ab initio no-core shell model (NCSM) have conventionally
been carried out using the harmonic-oscillator many-body basis. However, the
rapid falloff (Gaussian asymptotics) of the oscillator functions at large
radius makes them poorly suited for the description of the asymptotic
properties of the nuclear wavefunction. We establish the foundations for
carrying out no-core configuration interaction (NCCI) calculations using a
basis built from general radial functions and discuss some of the
considerations which enter into using such a basis. In particular, we consider
the Coulomb-Sturmian basis, which provides a complete set of functions with a
realistic (exponential) radial falloff.Comment: 7 pages, 3 figures; presented at Horizons on Innovative Theories,
Experiments, and Supercomputing in Nuclear Physics 2012, New Orleans,
Louisiana, June 4-7, 2012; submitted to J. Phys. Conf. Se
Collective rotation from ab initio theory
Through ab initio approaches in nuclear theory, we may now seek to quantitatively understand the wealth of nuclear collective phenomena starting from the underlying internucleon interactions. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments and electromagnetic transitions. In this review, NCCI calculations of 7–9Be are used to illustrate and explore ab initio rotational structure, and the resulting predictions for rotational band properties are compared with experiment. We highlight the robustness of ab initio rotational predictions across different choices for the internucleon interaction
A formally exact field theory for classical systems at equilibrium
We propose a formally exact statistical field theory for describing classical
fluids with ingredients similar to those introduced in quantum field theory. We
consider the following essential and related problems : i) how to find the
correct field functional (Hamiltonian) which determines the partition function,
ii) how to introduce in a field theory the equivalent of the indiscernibility
of particles, iii) how to test the validity of this approach. We can use a
simple Hamiltonian in which a local functional transposes, in terms of fields,
the equivalent of the indiscernibility of particles. The diagrammatic expansion
and the renormalization of this term is presented. This corresponds to a non
standard problem in Feynman expansion and requires a careful investigation.
Then a non-local term associated with an interaction pair potential is
introduced in the Hamiltonian. It has been shown that there exists a mapping
between this approach and the standard statistical mechanics given in terms of
Mayer function expansion. We show on three properties (the chemical potential,
the so-called contact theorem and the interfacial properties) that in the field
theory the correlations are shifted on non usual quantities. Some perspectives
of the theory are given.Comment: 20 pages, 8 figure
Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei
We report on the computational characteristics of ab initio nuclear structure
calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We
examine the computational complexity of the current implementation of the
SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for 6Li and
12C in large harmonic oscillator model spaces and SU(3)-selected subspaces. We
demonstrate LSU3shell's strong-scaling properties achieved with highly-parallel
methods for computing the many-body matrix elements. Results compare favorably
with complete model space calculations and significant memory savings are
achieved in physically important applications. In particular, a well-chosen
symmetry-adapted basis affords memory savings in calculations of states with a
fixed total angular momentum in large model spaces while exactly preserving
translational invariance.Comment: 11 pages, 8 figure
Collective Modes in Light Nuclei from First Principles
Results for ab initio no-core shell model calculations in a symmetry-adapted
SU(3)-based coupling scheme demonstrate that collective modes in light nuclei
emerge from first principles. The low-lying states of 6Li, 8Be, and 6He are
shown to exhibit orderly patterns that favor spatial configurations with strong
quadrupole deformation and complementary low intrinsic spin values, a picture
that is consistent with the nuclear symplectic model. The results also suggest
a pragmatic path forward to accommodate deformation-driven collective features
in ab initio analyses when they dominate the nuclear landscape.Comment: 5 pages 3 figures, accepted to Physical Review Letter
- …