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The emergence of rotational bands is observed in no-core configuration interaction (NCCI) calculations
for the odd-mass Be isotopes (7 � A � 13) with the JISP16 nucleon–nucleon interaction, as evidenced by
rotational patterns for excitation energies, quadrupole moments, and E2 transitions. Yrast and low-lying
excited bands are found. The results demonstrate the possibility of well-developed rotational structure in
NCCI calculations using a realistic nucleon–nucleon interaction.
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1. Introduction

Nuclei exhibit a wealth of collective phenomena, including clus-
tering, rotation, and pairing [1–3]. Collective dynamics have been
extensively modeled in phenomenological descriptions [1,3–5].
Some forms of collectivity may also be obtained microscopically
in the conventional (valence) shell model, e.g., Elliott SU(3) rota-
tion [6,7]. However, observing the emergence of collective phe-
nomena directly from first principles – that is, in a fully ab initio
calculation of the nucleus, as a many-body system in which all the
constituent protons and neutrons participate, with realistic inter-
actions – remains as an outstanding challenge.

Recent developments in large-scale calculations have brought
significant progress in the ab initio description of light nuclei
[8–12]. In ab initio no-core configuration interaction (NCCI) ap-
proaches – such as the no-core shell model (NCSM) [11,13–16], no-
core Monte Carlo shell model (MCSM) [17], or no-core full configu-
ration (NCFC) [18] methods – the nuclear many-body bound-state
eigenproblem is formulated as a matrix diagonalization problem.
The Hamiltonian is represented with respect to a basis of anti-
symmetrized products of single-particle states, generally harmonic
oscillator states, and the problem is solved for the full system of
A nucleons, i.e., with no inert core. In practice, such calculations
must be carried out in a finite space, obtained by truncating the
many-body basis according to a maximum allowed number Nmax
of oscillator excitations above the lowest oscillator configuration
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(e.g., Ref. [11]). With increasing Nmax, the results converge towards
those which would be achieved in the full, infinite-dimensional
space for the many-body system.

Computational restrictions limit the extent to which con-
verged calculations can be obtained for the observables needed
for the identification of collective phenomena. In particular, the
observables most indicative of rotational collectivity – E2 ma-
trix elements – present special challenges for convergence in an
NCCI approach [19,20], due to their sensitivity to the large-radius
asymptotic portions of the nuclear wave function. Nonetheless,
some promising suggestions of collective phenomena, e.g., defor-
mation and clustering, have already been obtained in ab initio
calculations [20–25].

In this Letter, we observe the emergence of collective rota-
tion in ab initio NCCI calculations for the Be isotopes, using the
realistic JISP16 nucleon–nucleon interaction [26]. Evidence for rota-
tional band structure is found in the calculated excitation energies,
quadrupole moments, and E2 transition matrix elements. In NCCI
calculations of the even-mass Be nuclei, yrast sequences of angu-
lar momenta 0,2,4, . . . arise with calculated properties resembling
those of K = 0 ground-state rotational bands (see Ref. [27] for a
preliminary report of comparable results for 12C). However, the
most distinctive, well-developed, and systematic rotational band
structures are observed in calculations for odd-mass nuclei. Given
the same range of excitation energies and angular momenta, the
low-lying � J = 1 bands in the odd-mass nuclei provide a richer
set of energy and electromagnetic observables. We therefore focus
here on the odd-mass Be isotopes, specifically, with 7 � A � 13. Af-
ter a brief review of the properties expected in nuclear rotational
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structure (Section 2), the results for rotational bands in NCCI
calculations of these Be isotopes are presented (Section 3). Pre-
liminary results for 9Be were reported in Ref. [25].

2. Rotation

We first review nuclear collective rotation and its expected sig-
natures [1,3]. Under the assumption of adiabatic separation of the
rotational degree of freedom, a nuclear state may be described in
terms of an intrinsic state, as viewed in the non-inertial intrinsic
frame, together with the rotational motion of this intrinsic frame.
For axially symmetric structure, in particular, the intrinsic state
|φK 〉 is characterized by definite angular momentum projection K
along the intrinsic symmetry axis. The full nuclear state |ψ J K M〉,
with total angular momentum J and projection M , then has the
form

|ψ J K M〉 =
[

2 J + 1

16π2(1 + δK 0)

]1/2 ∫
dϑ

[
D

J
M K (ϑ)|φK ;ϑ〉

+ (−) J+K D
J

M−K (ϑ)|φK̄ ;ϑ〉], (1)

where ϑ represents the Euler angles for rotation of the intrinsic
state, and |φK̄ 〉 is the R2-conjugate intrinsic state, which has an-
gular momentum projection −K along the symmetry axis.

The most recognizable features in the spectroscopy of rotational
states reside not in the states taken individually but in the re-
lationships among the different states |ψ J K M〉 sharing the same
intrinsic state |φK 〉. These states constitute members of a rotational
band, with angular momenta J = K , K + 1, . . . , except with only
even J (or only odd J , depending upon the intrinsic R2 symme-
try) for K = 0 bands. Within a rotational band, energies follow the
pattern

E( J ) = E0 + A J ( J + 1), (2)

where, in terms of the moment of inertia J about an axis perpen-
dicular to the symmetry axis, A ≡ h̄2/(2J ). For K = 1/2 bands,
the Coriolis contribution to the kinetic energy results in an energy
staggering given by

E( J ) = E0 + A

[
J ( J + 1) + a(−) J+1/2

(
J + 1

2

)]
, (3)

where a is the Coriolis decoupling parameter. Reduced ma-
trix elements 〈ψ J f K ‖Q 2‖ψ J i K 〉 of the electric quadrupole oper-
ator Q 2 between states within a band are entirely determined
by the rotational structure, except for the overall normaliza-
tion, which is proportional to the intrinsic quadrupole moment
e Q 0 ≡ (16π/5)1/2〈φK |Q 2,0|φK 〉. In particular, quadrupole mo-
ments within a band are obtained as

Q ( J ) = 3K 2 − J ( J + 1)

( J + 1)(2 J + 3)
Q 0, (4)

and reduced transition probabilities as

B(E2; J i → J f ) = 5

16π
( J i K 20| J f K )2(e Q 0)

2. (5)

In obtaining these results, Q 2 can be taken to be any operator
of the form Q 2μ = ∑A

i=1 eir2
i Y2μ(r̂i) and may therefore represent

the electromagnetic E2 transition operator, mass quadrupole ten-
sor, neutron quadrupole tensor, etc., depending upon the choice of
coefficients ei (see Section 3).
Fig. 1. Excitation energies obtained for states in the natural parity spaces of the odd-
mass Be isotopes: (a) 7Be, (b) 9Be, (c) 11Be, and (d) 13Be. Energies are plotted with
respect to J ( J + 1) to facilitate identification of rotational energy patterns, while
the J values themselves are indicated at top. Filled symbols indicate candidate ro-
tational bandmembers (black for yrast states and red for excited states, in the web
version of this Letter). The lines indicate the corresponding best fits for rotational
energies. Where quadrupole transition strengths indicate significant two-state mix-
ing (see text), more than one state of a given J is indicated as a bandmember.

3. Results

An NCCI calculation is defined by the interaction for the nuclear
system and by the truncated many-body space in which the calcu-
lation is carried out. The present calculations use the JISP16 inter-
action [26], which is a two-body interaction derived from neutron–
proton scattering data and adjusted via a phase-shift equivalent
transformation to describe light nuclei without explicit three-body
interactions. The bare interaction is used, without renormalization
to the truncated space [18]. The Coulomb interaction has been
omitted from the Hamiltonian, to ensure exact conservation of
isospin, thereby simplifying the spectrum. (The primary effect of
the Coulomb interaction, when included, is to induce a shift in the
overall binding energies, which is irrelevant to identification of ro-
tational band structure.) These calculations are carried out for os-
cillator truncations ranging from Nmax = 10 for 7Be to Nmax = 7 for
13Be, with basis oscillator h̄Ω parameters near the variational min-
imum (h̄Ω = 20–22.5 MeV). The proton–neutron M-scheme code
MFDn [28–30] has been used for the many-body calculations.

The calculated excitation energies for low-lying states of the
odd-mass Be isotopes (with 7 � A � 13) are shown in Figs. 1
and 2. For each nucleus, there are two parity spaces to consider,
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Fig. 2. Excitation energies obtained for states in the unnatural parity spaces of the
odd-mass Be isotopes: (a) 9Be, (b) 11Be, and (c) 13Be. Energies are plotted with re-
spect to J ( J + 1) to facilitate identification of rotational energy patterns, while the
J values themselves are indicated at top. Filled symbols indicate candidate rota-
tional bandmembers (black for yrast states and red for excited states, in the web
version of this Letter). The lines indicate the corresponding best fits for rotational
energies. Quadrupole transition strengths indicate significant but ambiguous two-
state or multistate mixing for certain poorly-isolated bandmembers.

shown separately in these two figures (energies are taken rela-
tive to the lowest state of the same parity). We refer to the parity
of the lowest allowed oscillator configuration (negative for 7,9,11Be,
positive for 13Be) as the natural parity (Fig. 1) and that obtained
by promoting one nucleon by one shell as the unnatural parity
(Fig. 2). The NCCI bases for these spaces consist of states with even
and odd numbers of oscillator excitations, respectively, above the
lowest configuration. While the lowest unnatural parity states nor-
mally lie at significantly higher energy than those of natural parity,
they are calculated to lie within a few MeV of the lowest natural
parity states in the isotopes 9,11,13Be [25], which are therefore in-
cluded in Fig. 2. Note that parity inversion arises for 11Be, i.e., the
ground state is experimentally [31] in the unnatural parity space,
and both spaces are near-degenerate in calculations at finite Nmax
(see Ref. [11]). The minimal isospin (T = T z) spectrum is shown in
each case.

To facilitate identification of rotational bands, it is helpful to
plot the calculated excitation energies with respect to J ( J + 1),
so that energies within an ideal rotational band would lie on a
straight line – or, for K = 1/2 bands, staggered about a straight
line. For the candidate K = 1/2 bands in Figs. 1 and 2, an energy
fit is obtained by adjusting the parameters of (3) to the first three
bandmembers (the remainder of the line is thus an extrapolation).
For the remaining bands, a straight line fit of (2) to all bandmem-
bers is shown.

The yrast and near-yrast states yield the most immediately rec-
ognizable sets of candidate bandmembers. Yrast rotational bands
(with bandmembers indicated by solid black squares in Figs. 1
and 2) are found with K = 1/2 except in the natural parity space
of 9Be [Fig. 1(b)], for which the yrast band has K = 3/2. The den-
sity of states rapidly increases off the yrast line, hindering iden-
tification of candidate bands and furthermore suggesting that the
rotational states may be fragmented by mixing with nearby states.
Nonetheless, several excited candidate bands (indicated by solid
red squares) can also be clearly identified, with 1/2 � K � 5/2,
once transition strengths have been taken into account.

For the yrast K = 1/2 bands, as a result of Coriolis decoupling,
it should be noted that alternate bandmembers are raised in en-
ergy into a region of higher density of states, which complicates
identification and is conducive to fragmentation. The energy stag-
gering in the calculated yrast band of the 7Be natural parity space
[Fig. 1(a)] – in which the J = 3/2,7/2, . . . levels are lowered, and
the J = 1/2,5/2, . . . levels are raised – corresponds to a nega-
tive value of the decoupling parameter. Note that the staggering is
sufficiently pronounced that the two lowest- J bandmembers are
inverted, as experimentally observed for this nucleus [32]. Then,
positive values of the decoupling parameter are instead obtained
for the remaining K = 1/2 bands.

It is interesting to compare these ab initio results for the yrast
bands in the natural parity spaces (Fig. 1) with the Nilsson model
predictions [33,34]. Specifically, the calculated yrast bands have
K = 1/2 (a ≈ −1.4) for 7Be, K = 3/2 for 9Be, K = 1/2 (a ≈ +1.2)
for 11Be, and K = 1/2 (a ≈ +3.1) for 13Be. The expected Nilsson
[NnzΛΩ] asymptotic quantum number assignments (see Fig. 5-1
of Ref. [3]) and corresponding Nilsson values of the decoupling
parameter are [110 1

2 ] (a ≈ −1) for 7Be, [101 3
2 ] for 9Be, [101 1

2 ]
(a ≈ 0) for 11Be, and [220 1

2 ] (a ≈ +1) for 13Be. We see consis-
tency not only in the K (= Ω) quantum numbers for the band but
also in the qualitative trend of the decoupling parameters for these
bands. (The Nilsson values for a [33,34] consider mixing of spher-
ical orbitals only within a single spherical oscillator shell, which
is sufficient for a weakly-deformed oscillator-like mean field. How-
ever, they should not be expected to provide quantitative accuracy
for a nucleon in, say, the mean field produced by a double-α 8Be
core.)

The quadrupole moments for all states within the candidate
bands are shown in Figs. 3 and 4, both for the yrast bands (black
squares) and for the excited bands (red diamonds). The values are
normalized to Q 0, to facilitate comparison with the rotational pre-
dictions for Q ( J )/Q 0 from (4) (shown as curves in each plot). The
value of Q 0 used for normalization has in each case been obtained
simply from the quadrupole moment of the lowest-energy band-
member of nonvanishing quadrupole moment. (Thus, for K = 1/2
bands, since the quadrupole moment of the J = 1/2 bandhead
vanishes identically, either the J = 3/2 or 5/2 bandmember is
used for normalization, according to the staggering.) Quadrupole
moments in Figs. 3 and 4 are calculated using both the pro-
ton (filled symbols) and neutron (open symbols) quadrupole ten-
sors.1

Finally, in-band transition strengths are shown in Fig. 5, again
as obtained for both proton (solid symbols) and neutron (open
symbols) quadrupole operators, and for � J = 2 transitions (up-
per curves, solid) and � J = 1 transitions (lower curves, dashed).
The various K = 1/2 bands are superposed in Fig. 5(a), and the
K = 3/2 bands are shown in Fig. 5(b). Transition strengths are

1 The proton quadrupole tensor, defined as Q 2μ,p = ∑Z
i=1 r2

p,i Y2μ(r̂p,i), is the op-
erator used in calculation of the physically observable electromagnetic moments
and transitions. However, the rotational relations (4) and (5) are equally applicable
to matrix elements of the neutron quadrupole tensor, Q 2μ,n = ∑N

i=1 r2
n,i Y2μ(r̂n,i).

These therefore provide a valuable complementary set of observables for purposes
of investigating whether or not the nuclear wave functions satisfy the conditions of
adiabatic rotational separation, particularly relevant, due to the high neutron–proton
asymmetry, in the neutron-rich Be isotopes.
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Fig. 3. Quadrupole moments calculated for candidate bandmembers in the natural
parity spaces of the odd-mass Be isotopes: (a) 7Be, (b) 9Be, (c) 11Be, and (d) 13Be.
The states are as identified in Fig. 1 and are shown as black squares for yrast states
or red diamonds for excited states (color in the web version of this Letter). Filled
symbols indicate proton quadrupole moments, and open symbols indicate neutron
quadrupole moments. The curves indicate the theoretical values for a K = 1/2 or
K = 3/2 rotational band, as appropriate, given by (4). Quadrupole moments are nor-
malized to Q 0, which is defined by either the J = 3/2 or J = 5/2 bandmember (see
text).

normalized as B(E2; J → J − � J )/(e Q 0)
2, for comparison with

the rotational values from (5). The same Q 0 values are used as
in Figs. 3 and 4, i.e., obtained from Q (3/2) or Q (5/2). Therefore,
no free normalization parameters remain for the B(E2) strengths
in Fig. 5. For instance, it may be observed that the values for
B(E2;3/2 → 1/2)/(e Q 0)

2 in Fig. 5(a) cluster at the rotational
value, indicating that the calculated B(E2;3/2 → 1/2) strengths
are in the proper relation to the calculated Q (3/2) moment or
Q (5/2) moment, as appropriate, consistent with adiabatic rota-
tion.

The level of resemblance between the calculated energies,
quadrupole moments, and transition strengths for the candidate
bands and the expected rotational values in Figs. 1–5, while clearly
not perfect, indicates a remarkably clean separation of rotational
and intrinsic degrees of freedom in these ab initio NCCI calcu-
lations. One should bear in mind that quadrupole moments of
arbitrarily chosen states in the spectrum fluctuate not only in mag-
nitude but also in sign, and that calculated E2 strengths among
arbitrarily chosen pairs of states fluctuate by many orders of mag-
nitude. (The 3/2 → 1/2 transitions in Fig. 5 are enhanced by
factors of ∼ 1.1–17 relative to the typical Weisskopf single-particle
estimate [35].)
Fig. 4. Quadrupole moments calculated for candidate bandmembers in the unnatu-
ral parity spaces of the odd-mass Be isotopes: (a) 9Be, (b) 11Be, and (c) 13Be. The
states are as identified in Fig. 2 and are shown as black squares for yrast states
or red diamonds for excited states (color in the web version of this Letter). Filled
symbols indicate proton quadrupole moments, and open symbols indicate neutron
quadrupole moments. The curves indicate the theoretical values for a K = 1/2 or
K = 3/2 rotational band, as appropriate, given by (4). Quadrupole moments are nor-
malized to Q 0, which is defined by either the J = 3/2 or J = 5/2 bandmember (see
text).

It is worth highlighting a few notable features from the band
structures in Figs. 1–5:

(1) The K = 1/2 yrast bands in the unnatural parity spaces
(Fig. 2) can be traced to J values as high as ∼ 13/2. For instance,
for 13Be [Fig. 2(c)], the energies of the J = 7/2, 9/2, 11/2, and
13/2 bandmembers all agree with the rotational values, from (3),
to within 0.4 MeV, and a J = 15/2 bandmember can also be rea-
sonably identified (within 1.5 MeV of the rotational energy). The
quadrupole moments [Fig. 4(c)] of the J = 3/2 and J = 5/2 band-
members (the latter is used to determine Q 0 in the figure) are
in the expected rotational ratio, from (4), to within 1.1% for pro-
tons or 0.4% for neutrons. The quadrupole moments for the higher
bandmembers are highly consistent between protons and neutrons
and have the expected sign, but they gradually fall off from the
rotational values, approaching zero for the J = 15/2 bandmem-
ber.

(2) For the yrast and low-lying rotational bands in the nat-
ural parity spaces (Fig. 1), rotational behavior appears to termi-
nate at generally lower angular momentum. For instance, for 11Be
[Fig. 1(c)], the K = 1/2 yrast band terminates at J = 7/2 on the
basis of energies: the lowest calculated J = 7/2 state lies within
0.5 MeV of the expected energy extrapolated for an yrast band-
member, but the lowest calculated J = 9/2 state is 11 MeV too
high in energy to be an yrast bandmember. The terminating an-
gular momentum expected in a simple valence p-shell or NCCI
Nmax = 0 description is, in fact, J = 7/2. The quadrupole moments
[Fig. 3(c)] suggest that the viability of a rotational description may
end even earlier, at J = 5/2. Similar comments may be made about
the yrast and excited bands in 7Be and 9Be [Fig. 1(a), (b)], where
the quadrupole moments [Fig. 3(a), (b)] are in close agreement
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Fig. 5. Transition B(E2; J → J − 2) and B(E2; J → J − 1) strengths calculated be-
tween candidate bandmembers, for bands with (a) K = 1/2 or (b) K = 3/2, in the
odd-mass Be isotopes 7Be, 9Be, 11Be, and 13Be (asterisks in the legend indicate ex-
cited bands). The curves indicate the theoretical values for � J = 2 (upper curves,
solid) and � J = 1 (lower curves, dashed) transitions in a band of the given K , given
by (5). Calculated transition strengths of the same � J within a band are connected
by dotted lines. Filled symbols indicate proton strengths, and open symbols indicate
neutron strengths. Values are normalized to the same intrinsic quadrupole moment
Q 0 as in Fig. 3 or 4. Where transition strengths indicate significant fragmentation
of the rotational state over multiple calculated states, namely, for the 11Be excited
J = 7/2 state identified in Fig. 1(c), the B(E2) values for transitions into or out of
this state are summed.

with rotational values through J = 7/2, but then begin to devi-
ate significantly at J = 9/2.

(3) To some extent in the quadrupole moments, but espe-
cially in the � J = 2 transition strengths for the K = 1/2 bands
[Fig. 5(a)], one may observe that the E2 matrix element strengths
start at the expected rotational values for low J but then sys-
tematically fall off below the rotational values at higher J . This
trend signals deviation from a strict adiabatic rotational picture,
as described in Section 2, but it is also, at least qualitatively, in
agreement with more microscopic treatments of nuclear rotation.
Specifically, E2 matrix elements within an Elliott SU(3) band de-
cline in strength as band termination is approached (see discussion
in Ref. [7]). A similar falloff can be obtained in Sp(3,R) symplec-
tic calculations [36] of rotational bands (see Fig. 6 of Ref. [37]).
Whether or not such SU(3) or Sp(3,R) rotational mechanisms
are at play in the present NCCI results awaits full analysis in an
SU(3)/Sp(3,R) symmetry-adapted implementation of the NCCI ap-
proach [38].

As we explore the interpretation of NCCI results in a rotational
context, it is interesting to note that straightforward fragmenta-
tion of the rotational strength over two calculated levels can be
observed for the J = 7/2 member of the excited band in the natu-
ral parity space of 11Be [Fig. 1(c)]. Transitions into and out of this
state are fragmented in the approximate proportion 0.4 : 0.6. How-
ever, the summed strengths, shown in Fig. 5(b), which combine
the fragmented transitions involving this level, are in near-perfect
agreement with rotational values.
Fig. 6. Relative quadrupole moments Q ( J )/Q 0, calculated with the (a) proton and
(b) neutron quadrupole tensor, for the K = 3/2 yrast band in the 9Be natural parity
space, from calculations with basis truncations Nmax = 4, 6, 8, and 10. Since the
normalization Q 0 is obtained in each case from Q (3/2), the plotted values indicate
the Nmax dependence of the ratio Q ( J )/Q (3/2).

We also note that a staggering may be observed in the � J = 2
transition strengths, to a greater or lesser degree, for the vari-
ous K = 1/2 bands [Fig. 5(a)]. Such staggering is in fact consistent
with the adiabatic rotational picture, once the 〈φK |Q 2,2K |φK̄ 〉 cross
term in the rotational E2 matrix element, neglected in (5), is taken
into account [see (6.38) of Ref. [1]]. In well-deformed rotor nuclei,
this contribution is commonly ignored, on the presumption that
〈φK |Q 2,0|φK 〉 ∼ Q 0 is strongly enhanced while 〈φK |Q 2,2K |φK̄ 〉 is
of single-particle strength [1]. However, in light nuclei, where the
collective enhancement is weaker, such a single-particle contribu-
tion may be expected to be nonnegligible in comparison, and to be
of approximately the magnitude seen in Fig. 5(a).

4. Conclusion

The principal challenge in identifying collective structure in
NCCI calculations with realistic interactions lies in the weak con-
vergence of the relevant observables. Eigenvalues and other calcu-
lated observables are dependent upon both the truncation Nmax
and the oscillator length parameter (or h̄Ω) for the NCCI basis. Al-
though it is possible to extrapolate the values of calculated observ-
ables to their values in the full, infinite space [18–20,39,40], such
methods are still in their formative stages, especially for the crucial
E2 observables. It is therefore particularly notable that quantita-
tively well-developed and robust signatures of rotation may be
observed in the present results. That this is possible reflects the
distinction between convergence of individual observables, taken
singly, and convergence of relative properties, such as ratios of
excitation energies or ratios of quadrupole matrix elements. It is
these latter relative properties which are essential to identifying
rotational dynamics and which are found to be sufficiently con-
verged to yield stable rotational patterns at currently achievable
Nmax truncations, as illustrated in Fig. 6 for the K = 3/2 ground-
state band of 9Be.

From the results of Section 3, it is seen that rotational structure
is pervasive in ab initio NCCI calculations of light nuclei, occurring
in the yrast and near-yrast regions of all the spectra considered
for the Be isotopic chain. With suitable extrapolation methods in
place, a salient test of ab initio calculations and interactions will
then be quantitative prediction of collective rotational parameters,
such as the intrinsic quadrupole moment, for direct comparison
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with experiment. One may observe that the present discussion
represents a phenomenological rotational analysis, in the tradi-
tional experimental sense, but of a large set of observables taken
from ab initio calculations of nuclei. Having full access to the cal-
culated wavefunctions, we may also hope to extract information
on the collective structure of the nuclear eigenstates from other
measures of the wave function correlations, such as density distri-
butions [20] and symmetry decompositions [41]. Natural questions
include the origin of rotation in the Be isotopes – for instance,
the extent to which it might arise from relative motion of alpha
clusters or perhaps from SU(3) rotation in an extended multi-shell
valence space – and the relevance of some form of Nilsson-like
strong-coupling picture for rotation in ab initio calculations of odd-
mass light nuclei. Indeed, the proton and neutron density distri-
butions found in Ref. [25] for the ground state of 9Be suggest the
emergence of two alpha clusters, with the additional neutron in a
π orbital.
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