1,912 research outputs found

    Magnetic fields from inflation: the transition to the radiation era

    Full text link
    We compute the contribution to the scalar metric perturbations from large-scale magnetic fields which are generated during inflation. We show that apart from the usual passive and compensated modes, the magnetic fields also contribute to the constant mode from inflation. This is different from the causal (post inflationary) generation of magnetic fields where such a mode is absent and it might lead to significant, non-Gaussian CMB anisotropies.Comment: 19 pages, no figures. v2: Substantially revised version with different conclusions. v3: one reference added, matches version accepted for publication in PR

    Dynamic expression of homeostatic ion channels in differentiated cortical astrocytes in vitro

    Get PDF
    The capacity of astrocytes to adapt their biochemical and functional features upon physiological and pathological stimuli is a fundamental property at the basis of their ability to regulate the homeostasis of the central nervous system (CNS). It is well known that in primary cultured astrocytes, the expression of plasma membrane ion channels and transporters involved in homeostatic tasks does not closely reflect the pattern observed in vivo. The individuation of culture conditions that promote the expression of the ion channel array found in vivo is crucial when aiming at investigating the mechanisms underlying their dynamics upon various physiological and pathological stimuli. A chemically defined medium containing growth factors and hormones (G5) was previously shown to induce the growth, differentiation, and maturation of primary cultured astrocytes. Here we report that under these culture conditions, rat cortical astrocytes undergo robust morphological changes acquir- ing a multi-branched phenotype, which develops gradually during the 2-week period of culturing. The shape changes were paralleled by variations in passive membrane properties and background conductance owing to the differential temporal development of inwardly rectifying chloride (Cl−) and potassium (K+) currents. Confocal and immunoblot analyses showed that morphologically differentiated astrocytes displayed a large increase in the expression of the inward rectifier Cl− and K+ channels ClC-2 and Kir4.1, respectively, which are relevant ion channels in vivo. Finally, they exhibited a large diminution of the intermediate filaments glial fibrillary acidic protein (GFAP) and vimentin which are upregulated in reactive astrocytes in vivo. Taken together the data indicate that long-term culturing of cortical astrocytes in this chemical-defined medium promotes a quiescent functional phenotype. This culture model could aid to address the regulation of ion channel expression involved in CNS homeostasis in response to physiological and pathological challenge

    Improvements to the Method of Dispersion Relations for B Nonleptonic Decays

    Get PDF
    We bring some clarifications and improvements to the method of dispersion relations in the external masses variables, that we proposed recently for investigating the final state interactions in the B nonleptonic decays. We first present arguments for the existence of an additional term in the dispersion representation, which arises from an equal-time commutator in the LSZ formalism and can be approximated by the conventional factorized amplitude. The reality properties of the spectral function and the Goldberger-Treiman procedure to perform the hadronic unitarity sum are analyzed in more detail. We also improve the treatment of the strong interaction part by including the contributions of both t and u-channel trajectories in the Regge amplitudes. Applications to the B0π+πB^0\to \pi^+\pi^- and B+π0K+B^+\to \pi^0 K^+ decays are presented.Comment: 16 pages, 4 new figures. modifications of the dispersion representatio

    Can slow roll inflation induce relevant helical magnetic fields?

    Full text link
    We study the generation of helical magnetic fields during single field inflation induced by an axial coupling of the electromagnetic field to the inflaton. During slow roll inflation, we find that such a coupling always leads to a blue spectrum with B2(k)kB^2(k) \propto k, as long as the theory is treated perturbatively. The magnetic energy density at the end of inflation is found to be typically too small to backreact on the background dynamics of the inflaton. We also show that a short deviation from slow roll does not result in strong modifications to the shape of the spectrum. We calculate the evolution of the correlation length and the field amplitude during the inverse cascade and viscous damping of the helical magnetic field in the radiation era after inflation. We conclude that except for low scale inflation with very strong coupling, the magnetic fields generated by such an axial coupling in single field slow roll inflation with perturbative coupling to the inflaton are too weak to provide the seeds for the observed fields in galaxies and clusters.Comment: 33 pages 6 figures; v4 to match the accepted version to appear in JCA

    Study of gravitational radiation from cosmic domain walls

    Full text link
    In this paper, following the previous study, we evaluate the spectrum of gravitational wave background generated by domain walls which are produced if some discrete symmetry is spontaneously broken in the early universe. We apply two different methods to calculate the gravitational wave spectrum: One is to calculate the gravitational wave spectrum directly from numerical simulations, and another is to calculate it indirectly by estimating the unequal time anisotropic stress power spectrum of the scalar field. Both analysises indicate that the slope of the spectrum changes at two characteristic frequencies corresponding to the Hubble radius at the decay of domain walls and the width of domain walls, and that the spectrum between these two characteristic frequencies becomes flat or slightly red tilted. The second method enables us to evaluate the GW spectrum semi-analytically for the frequencies which can not be resolved in the finite box lattice simulations, but relies on the assumptions for the unequal time correlations of the source.Comment: 17 pages, 9 figures; revised version of the manuscript, accepted for publication in JCA

    A Study of Gaussianity in CMB band maps

    Full text link
    The detection of non-Gaussianity in the CMB data would rule out a number of inflationary models. A null detection of non-Gaussianity, instead, would exclude alternative models for the early universe. Thus, a detection or non-detection of primordial non-Gaussianity in the CMB data is crucial to discriminate among inflationary models, and to test alternative scenarios. However, there are various non-cosmological sources of non-Gaussianity. This makes important to employ different indicators in order to detect distinct forms of non-Gaussianity in CMB data. Recently, we proposed two new indicators to measure deviation from Gaussianity on large angular scales, and used them to study the Gaussianity of the raw band WMAP maps with and without the KQ75 mask. Here we extend this work by using these indicators to perform similar analyses of deviation from Gaussianity of the foreground-reduced Q, V, and W band maps. We show that there is a significant deviation from Gaussianity in the considered full-sky maps, which is reduced to a level consistent with Gaussianity when the KQ75 mask is employed.Comment: 5 pages, 2 PS figures, uses ws-ijmpd.cls ; to be published in the International Journal of Modern Physics

    Constraints on the Electrical Charge Asymmetry of the Universe

    Full text link
    We use the isotropy of the Cosmic Microwave Background to place stringent constraints on a possible electrical charge asymmetry of the universe. We find the excess charge per baryon to be qep<1026eq_{e-p}<10^{-26}e in the case of a uniform distribution of charge, where ee is the charge of the electron. If the charge asymmetry is inhomogeneous, the constraints will depend on the spectral index, nn, of the induced magnetic field and range from qep<5×1020eq_{e-p}<5\times 10^{-20}e (n=2n=-2) to qep<2×1026eq_{e-p}<2\times 10^{-26}e (n2n\geq 2). If one could further assume that the charge asymmetries of individual particle species are not anti-correlated so as to cancel, this would imply, for photons, qγ<1035eq_\gamma< 10^{-35}e; for neutrinos, qν<4×1035eq_\nu<4\times10^{-35}e; and for heavy (light) dark matter particles qdm<4×1024eq_{\rm dm}<4\times10^{-24}e (qdm<4×1030eq_{\rm dm}<4\times10^{-30}e).Comment: New version to appear in JCA

    Model independent bounds on the modulus of the pion form factor on the unitarity cut below the ωπ\omega\pi threshold

    Full text link
    We calculate upper and lower bounds on the modulus of the pion electro magnetic form factor on the unitarity cut below the ωπ\omega\pi inelastic threshold, using as input the phase in the elastic region known via the Fermi-Watson theorem from the ππ\pi\pi PP-wave phase shift, and a suitably weighted integral of the modulus squared above the inelastic threshold. The normalization at t=0t=0, the pion charge radius and experimental values at spacelike momenta are used as additional input information. The bounds are model independent, in the sense that they do not rely on specific parametrizations and do not require assumptions on the phase of the form factor above the inelastic threshold. The results provide nontrivial consistencychecks on the recent experimental data on the modulus available below the ωπ\omega\pi threshold from e+ee^+ e^- annihilation and τ\tau-decay experiments. In particular, at low energies the calculated bounds offer a more precise description of the modulus than the experimental data.Comment: 12 pages, 23 figures, prepared using EPJ style files; v2 corresponds to proofs version to appear in European Physical Journal C; extended discussion compared to v

    Dispersion Relations and Rescattering Effects in B Nonleptonic Decays

    Get PDF
    Recently, the final state strong interactions in nonleptonic B decays were investigated in a formalism based on hadronic unitarity and dispersion relations in terms of the off-shell mass squared of the BB meson. We consider an heuristic derivation of the dispersion relations in the mass variables using the reduction LSZ formalism and find a discrepancy between the spectral function and the dispersive variable used in the recent works. The part of the unitarity sum which describes final state interactions is shown to appear as spectral function in a dispersion relation based on the analytic continuation in the mass squared of one final particles. As an application, by combining this formalism with Regge theory and SU(3) flavour symmetry we obtain constraints on the tree and the penguin amplitudes of the decay B0π+πB^0\to \pi^+\pi^-.Comment: 17 pages, Latex, 2 figure

    On the precision of chiral-dispersive calculations of ππ\pi\pi scattering

    Get PDF
    We calculate the combination 2a0(0)5a0(2)2a_0^{(0)}-5a_0^{(2)} (the Olsson sum rule) and the scattering lengths and effective ranges a1a_1, a2(I)a_2^{(I)} and b1b_1, b2(I)b_2^{(I)} dispersively (with the Froissart--Gribov representation) using, at low energy, the phase shifts for ππ\pi\pi scattering obtained by Colangelo, Gasser and Leutwyler (CGL) from the Roy equations and chiral perturbation theory, plus experiment and Regge behaviour at high energy, or directly, using the CGL parameters for aas and bbs. We find mismatch, both among the CGL phases themselves and with the results obtained from the pion form factor. This reaches the level of several (2 to 5) standard deviations, and is essentially independent of the details of the intermediate energy region (0.82E1.420.82\leq E\leq 1.42 GeV) and, in some cases, of the high energy behaviour assumed. We discuss possible reasons for this mismatch, in particular in connection with an alternate set of phase shifts.Comment: Version to appear in Phys. Rev. D. Graphs and sum rule added. Plain TeX fil
    corecore