10 research outputs found

    ADM Worldvolume Geometry

    Full text link
    We describe the dynamics of a relativistic extended object in terms of the geometry of a configuration of constant time. This involves an adaptation of the ADM formulation of canonical general relativity. We apply the formalism to the hamiltonian formulation of a Dirac-Nambu-Goto relativistic extended object in an arbitrary background spacetime.Comment: 4 pages, Latex. Uses espcrc2.sty To appear in the proceedings of the Third Conference on Constrained Dynamics and Quantum Gravity, September, 1999. To appear in Nuclear Physics B (Proceedings Supplement

    Hamilton's equations for a fluid membrane: axial symmetry

    Full text link
    Consider a homogenous fluid membrane, or vesicle, described by the Helfrich-Canham energy, quadratic in the mean curvature. When the membrane is axially symmetric, this energy can be viewed as an `action' describing the motion of a particle; the contours of equilibrium geometries are identified with particle trajectories. A novel Hamiltonian formulation of the problem is presented which exhibits the following two features: {\it (i)} the second derivatives appearing in the action through the mean curvature are accommodated in a natural phase space; {\it (ii)} the intrinsic freedom associated with the choice of evolution parameter along the contour is preserved. As a result, the phase space involves momenta conjugate not only to the particle position but also to its velocity, and there are constraints on the phase space variables. This formulation provides the groundwork for a field theoretical generalization to arbitrary configurations, with the particle replaced by a loop in space.Comment: 11 page

    Hamiltonian Frenet-Serret dynamics

    Get PDF
    The Hamiltonian formulation of the dynamics of a relativistic particle described by a higher-derivative action that depends both on the first and the second Frenet-Serret curvatures is considered from a geometrical perspective. We demonstrate how reparametrization covariant dynamical variables and their projections onto the Frenet-Serret frame can be exploited to provide not only a significant simplification of but also novel insights into the canonical analysis. The constraint algebra and the Hamiltonian equations of motion are written down and a geometrical interpretation is provided for the canonical variables.Comment: Latex file, 14 pages, no figures. Revised version to appear in Class. Quant. Gra

    Hamiltonian dynamics of extended objects

    Full text link
    We consider a relativistic extended object described by a reparametrization invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behavior under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations shown to be consistent with the Euler-Lagrange equations.Comment: 24 pages, late

    Auxiliary fields in the geometrical relativistic particle dynamics

    Full text link
    We describe how to construct the dynamics of relativistic particles following, either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles.Comment: 13 pages, no figure

    Summary of session A4 at the GRG18 conference: Alternative Theories of Gravity

    Full text link
    More than 50 abstracts were submitted to the A4 session on "Alternatives Theories of Gravity" at the GRG18 conference. About 30 of them were scheduled as oral presentations, that we summarize below. We do not intend to give a critical review, but rather pointers to the corresponding papers. The main topics were (i) brane models both from the mathematical and the phenomenological viewpoints; (ii) Einstein-Gauss-Bonnet gravity in higher dimensions or coupled to a scalar field; (iii) modified Newtonian dynamics (MOND); (iv) scalar-tensor and f(R) theories; (v) alternative models involving Lorentz violations, noncommutative spacetimes or Chern-Simons corrections.Comment: 9 pages, no figure; the GRG18 conference was held in Sydney, Australia, 8-13 July 200
    corecore