87 research outputs found

    Le abitudini al tempo del Coronavirus

    Get PDF
    Introduction: The COVID-19 pandemic that hit the humankind in December 2019, is steering quick and drastic changes to our habits. The goal of our research is the analysis of the emotional, healthy and physiological effects of this radical routine disruption, in a sample of 3000 Italian people. Methods: We made use of a 5-days flash survey in an anonymous way, available from April the 5th until April the 10th. Results: As expected, results show a healthy decrease, after just one month of lockdown, at several stages: emotional, relational, nutritional and physical. Conclusions: This quarantine period can be considered as an extreme example of immediate sedentary and isolation effects on people. Home habits such as basic physical activity, circadian rhythm routine, proper diet, and correct information consumption can be useful to increase our resilience in difficult times like the current one, but also in our next future

    IMMU-01. TEM-GBM: AN OPEN-LABEL, PHASE I/IIA DOSE-ESCALATION STUDY EVALUATING THE SAFETY AND EFFICACY OF GENETICALLY MODIFIED TIE-2 EXPRESSING MONOCYTES TO DELIVER IFN-A WITHIN GLIOBLASTOMA TUMOR MICROENVIRONMENT

    Get PDF
    Abstract Temferon is a macrophage-based treatment relying on ex-vivo transduction of autologous HSPCs to express immune-payloads within the TME. Temferon targets the immune-modulatory molecule IFN-a, to a subset of tumor infiltrating macrophages known as Tie-2 expressing macrophages (TEMs) due to the Tie2 promoter and a post-transcriptional regulation layer represented by miRNA-126 target sequences. As of 31st May 2021, 15-patients received Temferon (D+0) with follow-up of 3 – 693 days. After conditioning neutrophil and platelet engraftment occurred at D+13 and D+13.5, respectively. Temferon-derived differentiated cells, as determined be the number of vector copy per genome, were found within 14 days post treatment and persisted albeit at lower levels up to 18-months. Very low concentrations of IFN-a in the plasma (8.7 pg/ml-D+30) and in the CSF (1.6 pg/ml-D+30) were detected, suggesting tight regulation of transgene expression. Five-deaths occurred at D+322, +340, +402, +478 and +646 due to PD, and one at D+60 due to complications following the conditioning regimen. Eight-patients had progressive disease (range: D-11 to +239) as expected for this tumor type. SAEs include GGT elevation (possibly related to Temferon) and infections, venous thromboembolism, brain abscess, hemiparesis, seizures, anemia and general physical condition deterioration, compatible with ASCT, concomitant medications and PD. Four-patients underwent 2ndsurgery. Recurrent tumors had gene-marked cells and increased expression of ISGs compared to first surgery, indicative of local IFNa release by TEMs. In one patient, a stable lesion had a higher proportion of T cells and TEMs within the myeloid infiltrate and an increased ISGs than in the progressing lesion, detected in the same patient. Tumor-associated clones expanded in the periphery. TME characterization by scRNA and TCR-sequencing is ongoing. To date, Temferon is well tolerated, with no DLTs identified. The results provide initial evidence of Temferon potential to activate the immune system of GBM patients, as predicted by preclinical studies

    The role of microglia in human disease: therapeutic tool or target?

    Get PDF

    Myeloid/Microglial driven autologous hematopoietic stem cell gene therapy corrects a neuronopathic lysosomal disease

    Get PDF
    Mucopolysaccharidosis type IIIA (MPSIIIA) is a lysosomal storage disorder caused by mutations in N-sulfoglucosamine sulfohydrolase (SGSH), resulting in heparan sulfate (HS) accumulation and progressive neurodegeneration. There are no treatments. We previously demonstrated improved neuropathology in MPSIIIA mice using lentiviral vectors (LVs) overexpressing SGSH in wild-type (WT) hematopoietic stem cell (HSC) transplants (HSCTs), achieved via donor monocyte/microglial engraftment in the brain. However, neurological disease was not corrected using LVs in autologous MPSIIIA HSCTs. To improve brain expression via monocyte/microglial specificity, LVs expressing enhanced green fluorescent protein (eGFP) under ubiquitous phosphoglycerate kinase (PGK) or myeloid-specific promoters were compared in transplanted HSCs. LV-CD11b-GFP gave significantly higher monocyte/B-cell eGFP expression than LV-PGK-GFP or LV-CD18-GFP after 6 months. Subsequently, autologous MPSIIIA HSCs were transduced with either LV-PGK-coSGSH or LV-CD11b-coSGSH vectors expressing codon-optimized SGSH and transplanted into MPSIIIA mice. Eight months after HSCT, LV-PGK-coSGSH vectors produced bone marrow SGSH (576% normal activity) similar to LV-CD11b-coSGSH (473%), but LV-CD11b-coSGSH had significantly higher brain expression (11 versus 7%), demonstrating improved brain specificity. LV-CD11b-coSGSH normalized MPSIIIA behavior, brain HS, GM2 ganglioside, and neuroinflammation to WT levels, whereas LV-PGK-coSGSH partly corrected neuropathology but not behavior. We demonstrate compelling evidence of neurological disease correction using autologous myeloid driven lentiviral-HSC gene therapy in MPSIIIA mice. © The American Society of Gene & Cell Therapy
    corecore