2 research outputs found

    GEN-O-MA project: an Italian network studying clinical course and pathogenic pathways of moyamoya disease—study protocol and preliminary results

    Get PDF
    Background: GENetics of mOyaMoyA (GEN-O-MA) project is a multicenter observational study implemented in Italy aimed at creating a network of centers involved in moyamoya angiopathy (MA) care and research and at collecting a large series and bio-repository of MA patients, finally aimed at describing the disease phenotype and clinical course as well as at identifying biological or cellular markers for disease progression. The present paper resumes the most important study methodological issues and preliminary results. Methods: Nineteen centers are participating to the study. Patients with both bilateral and unilateral radiologically defined MA are included in the study. For each patient, detailed demographic and clinical as well as neuroimaging data are being collected. When available, biological samples (blood, DNA, CSF, middle cerebral artery samples) are being also collected for biological and cellular studies. Results: Ninety-eight patients (age of onset mean ± SD 35.5 ± 19.6 years; 68.4% females) have been collected so far. 65.3% of patients presented ischemic (50%) and haemorrhagic (15.3%) stroke. A higher female predominance concomitantly with a similar age of onset and clinical features to what was reported in previous studies on Western patients has been confirmed. Conclusion: An accurate and detailed clinical and neuroimaging classification represents the best strategy to provide the characterization of the disease phenotype and clinical course. The collection of a large number of biological samples will permit the identification of biological markers and genetic factors associated with the disease susceptibility in Italy

    Selective Synthesis of Fluorine-Containing Cyclic ß-Amino Acid Scaffolds

    Get PDF
    Fluorine-containing organic molecules have generated increasing impact in drug research over the past decade. Their preparation and development of novel synthetic methods towards new types of fluorinated molecules among them of b-amino acid derivatives has received large interest. Our research group have designed various highly selective and stereocontrolled methods for the construction of fluorine-containing cyclic b-amino acid derivatives. The synthetic approaches developed for the synthesis of various pharmacologically interesting cyclic b-amino acid derivatives as monomers with multiple stereogenic centers might be valuable protocols for the access of other classes of organic compounds
    corecore