2,087 research outputs found

    Electron-phonon interaction and antiferromagnetic correlations

    Get PDF
    We study effects of the Coulomb repulsion on the electron-phonon interaction (EPI) in a model of cuprates at zero and finite doping. We find that antiferromagnetic correlations strongly enhance EPI effects on the electron Green's function with respect to the paramagnetic correlated system, but the net effect of the Coulomb interaction is a moderate suppression of the EPI. Doping leads to additional suppression, due to reduced antiferromagnetic correlations. In contrast, the Coulomb interaction strongly suppresses EPI effects on phonons, but the suppression weakens with doping.Comment: 4 pages and 5 figure

    Phonon softening and dispersion in the 1D Holstein model of spinless fermions

    Get PDF
    We investigate the effect of electron-phonon interaction on the phononic properties in the one-dimensional half-filled Holstein model of spinless fermions. By means of determinantal Quantum Monte Carlo simulation we show that the behavior of the phonon dynamics gives a clear signal of the transition to a charge-ordered phase, and the phase diagram obtained in this way is in excellent agreement with previous DMRG results. By analyzing the phonon propagator we extract the renormalized phonon frequency, and study how it first softens as the transition is approached and then subsequently hardens in the charge-ordered phase. We then show how anharmonic features develop in the phonon propagator, and how the interaction induces a sizable dispersion of the dressed phonon in the non-adiabatic regime.Comment: 7 pages, 6 figure

    Isotope effects in the Hubbard-Holstein model within dynamical mean-field theory

    Full text link
    We study the isotope effects arising from the coupling of correlated electrons with dispersionless phonons by considering the Hubbard-Holstein model at half-filling within the dynamical mean-field theory. In particular we calculate the isotope effects on the quasi-particle spectral weight ZZ, the renormalized phonon frequency, and the static charge and spin susceptibilities. In the weakly correlated regime U/t≲1.5U/t \lesssim 1.5, where UU is the Hubbard repulsion and tt is the bare electron half-bandwidth, the physical properties are qualitatively similar to those characterizing the Holstein model in the absence of Coulomb repulsion, where the bipolaronic binding takes place at large electron-phonon coupling, and it reflects in divergent isotope responses. On the contrary in the strongly correlated regime U/t≳1.5U/t \gtrsim 1.5, where the bipolaronic metal-insulator transition becomes of first order, the isotope effects are bounded, suggesting that the first order transition is likely driven by an electronic mechanism, rather then by a lattice instability. These results point out how the isotope responses are extremely sensitive to phase boundaries and they may be used to characterize the competition between the electron-phonon coupling and the Hubbard repulsion.Comment: 10 pages, 8 figures. The paper has been already accepted on Phys. Rev.

    Polaronic and nonadiabatic phase diagram from anomalous isotope effects

    Get PDF
    Isotope effects (IEs) are powerful tool to probe directly the dependence of many physical properties on the lattice dynamics. In this paper we invenstigate the onset of anomalous IEs in the spinless Holstein model by employing the dynamical mean field theory. We show that the isotope coefficients of the electron effective mass and of the dressed phonon frequency are sizeable also far away from the strong coupling polaronic crossover and mark the importance of nonadiabatic lattice fluctuations in the weak to moderate coupling region. We characterize the polaronic regime by the appearence of huge IEs. We draw a nonadiabatic phase diagram in which we identify a novel crossover, not related to polaronic features, where the IEs attain their largest anomalies.Comment: 5 pages, 4 figure

    Effect of mesoscopic inhomogeneities on local tunnelling density of states

    Full text link
    We carry out a theoretical analysis of the momentum dependence of the Fourier-transformed local density of states (LDOS) in the superconducting cuprates within a model considering the interference of quasiparticles scattering on quenched impurities. The impurities introduce an external scattering potential, which is either nearly local in space or it can acquire a substantial momentum dependence due to a possible strong momentum dependence of the electronic screening near a charge modulation instability. The key new effect that we introduce is an additional mesoscopic disorder aiming to reproduce the inhomogeneities experimentally observed in scanning tunnelling microscopy. The crucial effect of this mesoscopic disorder is to give rise to point-like spectroscopic features, to be contrasted with the curve-like shape of the spectra previously calculated within the interfering-quasiparticle schemes. It is also found that stripe-like charge modulations play a relevant role to correctly reproduce all the spectral features of the experiments.Comment: 11 pages and 5 figure

    Pressure induced magnetic phase separation in La0.75_{0.75}Ca0.25_{0.25}MnO3_{3} manganite

    Full text link
    The pressure dependence of the Curie temperature TC(P)_{C}(P) in La0.75_{0.75}Ca0.25_{0.25}MnO3_{3} was determined by neutron diffraction up to 8 GPa, and compared with the metallization temperature TIM(P)_{IM}(P) \cite{irprl}. The behavior of the two temperatures appears similar over the whole pressure range suggesting a key role of magnetic double exchange also in the pressure regime where the superexchange interaction is dominant. Coexistence of antiferromagnetic and ferromagnetic peaks at high pressure and low temperature indicates a phase separated regime which is well reproduced with a dynamical mean-field calculation for a simplified model. A new P-T phase diagram has been proposed on the basis of the whole set of experimental data.Comment: 5 pages, 4 figure

    Modeling the Unconventional Superconducting Properties of Expanded A3_3C60_{60} Fullerides

    Full text link
    The trivalent alkali fullerides A3_3C60_{60}, where C60_{60} are a well established family of molecular superconductors. The electron pairing has s-wave symmetry and is due to standard electron-phonon coupling, in particular by Jahn-Teller intramolecular C60_{60} vibrations. A source of renewed interest in these systems are indications of strong electron-electron repulsion, which emerges especially in compounds where the C60_{60}-C60_{60} distance is expanded. In several compounds after an initial increases Tc_c, further expansions leads to a decline of superconductivity and its eventual disappearance in favor of a Mott insulating state We theoretically study a three-orbital Hubbard model including the phonon-mediated interaction using Dynamical Mean-Field Theory, which is particularly suitable due to the local nature of all the interactions. We studied the system as a function of the ratio of intra-molecular repulsion UU over the electron bandwidth WW, the increase of U/WU/W representing the main effect of lattice expansion. The phase diagram is close to that of actual materials, with a dome-shaped superconducting region preceding the Mott transition. Unconventional properties predicted by this model include: (i) a pseudogap in the normal phase; (ii) a gain of kinetic energy and of d.c. conductivity at the onset of superconductivity; (iii) regular spin susceptibility and specific heat despite strong correlations; (iv) the emergence of more than one energy scale governing the renormalized single particle dispersion. These predictions, if confirmed, would establish fullerides, especially the expanded ones, as members of the wider family of strongly correlated superconductors.Comment: 17 pages, 11 figures, to be published on Rev. Mod. Phys. (Colloquia

    Computations for the 16-foot transonic tunnel, NASA, Langley Research Center, revision 1

    Get PDF
    The equations used by the 16 foot transonic tunnel in the data reduction programs are presented in eight modules. Each module consists of equations necessary to achieve a specific purpose. These modules are categorized in the following groups: tunnel parameters; jet exhaust measurements; skin friction drag; balance loads and model attitudes calculations; internal drag (or exit-flow distributions); pressure coefficients and integrated forces; thrust removal options; and turboprop options. This document is a companion document to NASA TM-83186, A User's Guide to the Langley 16 Foot Transonic Tunnel, August 1981

    Polaron formation for a non-local electron-phonon coupling: A variational wave-function study

    Full text link
    We introduce a variational wave-function to study the polaron formation when the electronic transfer integral depends on the relative displacement between nearest-neighbor sites giving rise to a non-local electron-phonon coupling with optical phonon modes. We analyze the ground state properties such as the energy, the electron-lattice correlation function, the phonon number and the spectral weight. Variational results are found in good agreement with analytic weak-coupling perturbative calculations and exact numerical diagonalization of small clusters. We determine the polaronic phase diagram and we find that the tendency towards strong localization is hindered from the pathological sign change of the effective next-nearest-neighbor hopping.Comment: 11 page

    Advanced platelet-rich fibrin as a therapeutic option in the treatment of dry socket: Literature review and case series

    Get PDF
    Alveolar osteitis (AO) is one of the complications that occur after tooth extraction. The aim of this study has been to evaluate the efficacy of Advanced Platelet-rich Fibrin (A-PRF) in the management of pain and the acceleration of wound healing in the treatment of AO. Consecutive patients who were diagnosed with AO, recruited from patients referred to the Oral Surgery Department of the University of Naples Federico II, were enrolled. After local anesthesia, the dry socket was curetted and irrigated with saline. The Platelet-rich Fibrin (PRF) clot was placed in the socket and then covered with an A-PRF membrane. Clinical parameters, such as the degree of pain and rate of granulation tissue (GT) formation, were measured before treatment and after 1, 3, 7, 14, and 21 days. The Friedman test for dependent samples was used to detect the treatment and time effect. Four patients with established AO were included. On all the examination days, the post-operative recovery was uneventful. The pain scores progressively reduced, from an average of 8.5 before treatment to 0.25 on the third day, and the GT formation improved over time. The use of A-PRF in the treatment of AO significantly reduced the pain level and enhanced the wound-healing process
    • …
    corecore