19 research outputs found

    Modulation of Methacrylated Hyaluronic Acid Hydrogels Enables Their Use as 3D Cultured Model

    Get PDF
    : Bioengineered hydrogels represent physiologically relevant platforms for cell behaviour studies in the tissue engineering and regenerative medicine fields, as well as in in vitro disease models. Hyaluronic acid (HA) is an ideal platform since it is a natural biocompatible polymer that is widely used to study cellular crosstalk, cell adhesion and cell proliferation, and is one of the major components of the extracellular matrix (ECM). We synthesised chemically modified HA with photo-crosslinkable methacrylated groups (HA-MA) in aqueous solutions and in strictly monitored pH and temperature conditions to obtain hydrogels with controlled bulk properties. The physical and chemical properties of the different HA-MA hydrogels were investigated via rheological studies, mechanical testing and scanning electron microscopy (SEM) imaging, which allowed us to determine the optimal biomechanical properties and develop a biocompatible scaffold. The morphological evolution processes and proliferation rates of glioblastoma cells (U251-MG) cultured on HA-MA surfaces were evaluated by comparing 2D structures with 3D structures, showing that the change in dimensionality impacted cell functions and interactions. The cell viability assays and evaluation of mitochondrial metabolism showed that the hydrogels did not interfere with cell survival. In addition, morphological studies provided evidence of cell-matrix interactions that promoted cell budding from the spheroids and the invasiveness in the surrounding environment

    Functional Organic Materials for Photovoltaics: The Synthesis as a Tool for Managing Properties for Solid State Applications

    No full text
    The continuous increase in the global energy demand deeply impacts the environment. Consequently, the research is moving towards more sustainable forms of energy production, storage and saving. Suitable technologies and materials are fundamental to win the challenge towards a greener and more eco-friendly society. Organic π-conjugated materials, including small molecules, oligomers and polymers are a wide and versatile class of functional materials with great potentiality, as they can be used as active matrixes in the fabrication of lightweight, flexible, cheap and large area devices. Their chemical and physical properties, both at a molecular level and mainly in the solid state, are a result of many factors, strictly related to the conjugated structure and functional groups on the backbone, which control the intermolecular forces driving solid state aggregations. The synthesis, through the molecular design, the choice of conjugated backbone and functionalization, represents the first and most powerful tool for finely tuning the chemico-physical properties of organic materials tailored for specific applications. In the present review, we report an overview of our works focused on synthetic methodologies, characterization, structure-properties correlation studies and applications of organic materials designed for energy-involving solid-state applications, organic photovoltaics in particular. The impact of functionalization on electro-optical properties and performance in device are discussed, also in relation to the specific applications

    Mixed-Valence Compounds as a New Route for Electrochromic Devices with High Coloration Efficiency in the Whole Vis-NIR Region

    Get PDF
    Electrochromic devices (ECDs) that allow the modulation of light transmission are very attractive in the research field of energy saving. Here all-in-one gel switchable ECDs based on mixed-valence electroactive compounds were developed. The use of the thienoviologen/ferrocene couple as cathode and anode, respectively, leads to a significant electrochromic band in the visible range (550–800 nm), with a color change from yellow to green, and to a lower band in the NIR region (1000–1700 nm), due to the presence of one electroactive-chromic species. Replacement of the electroactive ferrocene with a fluorene-diarylamine electroactive-chromic species, allows to extend and intensify the absorption in the NIR region, thus affording modulation of the solar radiation from 500 up to 2200 nm. High optical contrast, fast coloration and bleaching times and outstanding coloration efficiencies were measured for all observed absorption bands upon the application of small potential differences (1.4 V < DV < 2 V)

    Mixed-Valence Compounds as a New Route for Electrochromic Devices with High Coloration Efficiency in the Whole Vis-NIR Region

    No full text
    Electrochromic devices (ECDs) that allow the modulation of light transmission are very attractive in the research field of energy saving. Here all-in-one gel switchable ECDs based on mixed-valence electroactive compounds were developed. The use of the thienoviologen/ferrocene couple as cathode and anode, respectively, leads to a significant electrochromic band in the visible range (550&ndash;800 nm), with a color change from yellow to green, and to a lower band in the NIR region (1000&ndash;1700 nm), due to the presence of one electroactive-chromic species. Replacement of the electroactive ferrocene with a fluorene-diarylamine electroactive-chromic species, allows to extend and intensify the absorption in the NIR region, thus affording modulation of the solar radiation from 500 up to 2200 nm. High optical contrast, fast coloration and bleaching times and outstanding coloration efficiencies were measured for all observed absorption bands upon the application of small potential differences (1.4 V &lt; DV &lt; 2 V)

    A selective chemoreceptor for Aflatoxin B1.

    No full text
    Aflatoxin B1 (AFB1) is a toxin produced by the mould fungus varieties Aspergillus Flavus and Aspergillus parasiticus, which grows on foodstuffs like peanuts, flour, pepper etc. Due to its high toxicity for the human health, the AFB1 allowed concentration in food and animal feed is limited to ppb according to last EC directives [1]. At present, the methods available for aflatoxin detection are based mainly on HPLC or ELISA techniques. Therefore, new methods with low detection limit and sufficient selectivity towards AFB1 with respect to its less toxic analogous molecules, aflatoxins G1 (AFG1) and G2 (AFG2), need to be developed. Furthermore, portable and simple methods are preferred for the possibility to be used directly on site. In this respect, by using computer modelling, we have identified a chemoreceptor, based on a porphyrin moiety, able to bind selectively AFB1 with respect to AFG1. These predictions were confirmed by evaluating the binding properties of different porphyrin molecules with AFB1, AFG1 and AFG2 in THF. The system was fully characterised by means of UV absorption and steady-state and time resolved fluorescence measurements

    Facile preparation of TiO2-polyvinyl alcohol hybrid nanoparticles with improved visible light photocatalytic activity

    No full text
    Hybrid inorganic/organic core/shell nanoparticles were prepared through a two step synthesis procedure. In the first step, pure anatase TiO2 nanoparticles were synthesized though a rapid microwave assisted non-aqueous route. Then, the obtained titania nanoparticles were coated with polyvinyl alcohol (PVA) using a simple solution method followed by relatively low temperature treatment. The PVA-coated titania nanoparticles samples were prepared at different TiO2–PVA weight ratio and they were characterized using X-Ray diffraction, transmission electron microscopy, infrared spectroscopy and Brunauer–Emmett–Teller (BET) analysis. Photocatalytic performance was also evaluated for all samples and the results indicated that TiO2:PVA weight ratio was a key factor to obtain an improvement of the photocatalytic activity with respect to bare TiO2 nanoparticles, since PVA concentration influenced the surface area and the aggregation of nanoparticles and the thickness of the coating layer. This inexpensive system provides a simple, quick and effective approach which allows to obtain core/shell hybrid nanostructures

    Enhanced photocatalytic activity of pure anatase Tio<inf>2</inf> and Pt-Tio<inf>2</inf> nanoparticles synthesized by green microwave assisted route

    No full text
    High-yield, rapid and facile synthesis of elongated pure anatase titania nanoparticles has been achieved through a nonaqueous microwave-based approach. The residual organics onto nanoparticles surfaces were completely removed through a new treatment under ozone flow, at room temperature in air. Such an ozone cleaning method revealed an effective inexpensive dry process of removing organic contaminants from nanoparticles surfaces. The TiO2 elongated nanoparticles having a length of 13.8 +/- 5.5 nm and a diameter of 9.0 +/- 1.2 nm were characterized by powder X-Ray diffraction, transmission electron microscopy, selected area diffraction, BET surface area analyzer and FT-IR spectroscopy. Photocatalytic evaluation demonstrated that the as-synthesized ozone-cleaned TiO2 nanoparticles and TiO2 nanoparticles loaded with platinum possess excellent Rhodamine B performance with respect to both commercial spherical nanotitania P25 and P25 loaded with platinum. This could be attributed to the anatase phase purity, small size, large specific surface area and clean surfaces of the prepared nanoparticles

    Synthesis of Ultrafine Anatase Titanium Dioxide (TiO2) Nanocrystals by the Microwave-Solvothermal Method

    No full text
    The present investigation reported the synthesis of ultrafine anatase titanium dioxide (TiO2) nanocrystals using titanium isopropoxide (TTIP) as precursor in presence of benzyl alcohol as solvent and glucose as capping agent via a microwave-solvothermal method. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption, micro Raman and Fourier transform infrared spectroscopies (FT-IR). From this preparation method it was demonstrated that the obtainable TiO2 nanocrystals were less than 10 nm in mean size, mainly in anatase phase, presenting also a mesoporous structure. The use of glucose as capping agent added in the reaction system played a role in the anisotropic growth of the TiO2 nanocrystals, as evidenced by XRD domain size analysis and promoted an increase of the specific surface area

    Efficient, Green Non-aqueous Microwave-assisted Synthesis of Anatase TiO2 and Pt Loaded TiO2 Nanorods with High Photocatalytic Performance

    Get PDF
    A high-yield synthesis of pure anatase titania nanorods has been achieved through a nonaqueous microwave-based approach. The residual organics on nanoparticles surfaces were completely removed under ozone flow at room temperature in air. The TiO2 nanorods, with average lengths of 27.6 ± 5.8 nm and average diameters of 3.2 ± 0.4 nm, were characterized by powder X-Ray diffraction, transmission electron microscopy, selected area diffraction, BET surface area analysis and FT-IR spectroscopy. The photocatalytic performances of the as-synthesized TiO2 nanorods and platinum loaded TiO2 nanorods were implemented with respect to both commercial P25 and platinum loaded P25. Performance enhancements should be attributed to effects like differences in the adsorption capacity and in the separation efficiency of the photogen‐ erated electrons-holes
    corecore