61 research outputs found

    Proposal for a single-molecule field-effect transistor for phonons

    Full text link
    We propose a practical realization of a field-effect transistor for phonons. Our device is based on a single ionic polymeric molecule and it gives modulations as large as -25% in the thermal conductance for feasible temperatures and electric field magnitudes. Such effect can be achieved by reversibly switching the acoustic torsion mode into an optical mode through the coupling of an applied electric field to the dipole moments of the monomers. This device can pave the way to the future development of phononics at the nanoscale or molecular scale

    Microscopic model of a phononic refrigerator

    Get PDF
    We analyze a simple microscopic model to pump heat from a cold to a hot reservoir in a nanomechanical system. The model consists of a one-dimensional chain of masses and springs coupled to a back gate through which a time-dependent perturbation is applied. The action of the gate is to modulate the coupling of the masses to a substrate via additional springs that introduce a moving phononic barrier. We solve the problem numerically using non-equilibrium Green function techniques. For low driving frequencies and for sharp traveling barriers, we show that this microscopic model realizes a phonon refrigerator.Comment: 9 pages, 4 figure

    The role of the disorder range and electronic energy in the graphene nanoribbons perfect transmission

    Get PDF
    Numerical calculations based on the recursive Green's functions method in the tight-binding approximation are performed to calculate the dimensionless conductance gg in disordered graphene nanoribbons with Gaussian scatterers. The influence of the transition from short- to long-ranged disorder on gg is studied as well as its effects on the formation of a perfectly conducting channel. We also investigate the dependence of electronic energy on the perfectly conducting channel. We propose and calculate a backscattering estimative in order to establish the connection between the perfectly conducting channel (with g=1g=1) and the amount of intervalley scattering.Comment: 7 pages, 9 figures. To be published on Phys. Rev.
    • …
    corecore