39 research outputs found

    26S PROTEASOME AND PKA MODULATE MAMMALIAN SPERM CAPACITATION BY CREATING AN INTEGRATED DIALOGUE: A COMPUTATIONAL ANALYSIS

    Get PDF
    Recent experimental evidence suggests the involvement of the 26S proteasome, the main protease active in eukaryotic cells, in the process that leads mammalian sperm to become fully fertile, so-called capacitation. Unfortunately, its role in male gametes signaling is still far from being completely understood. For this reason, here, we realized a computational model as an attempt to rebuild and explore 26S proteasome signaling cascade, aggregating all the molecular data available to date and realizing the Proteasome Interactome Network (PIN). Once obtained the network (i.e., a graph to represent the molecules as nodes and the interactions among them as links), we assessed its topology to infer important biological information. PIN is composed of 157 nodes, 248 links and it is characterized by a scale-free topology, following the Barabasi Albert model. In other words, it possesses a large amount of scarcely linked nodes and a small set of highly linked nodes, the hubs, which act as system controllers. This peculiar topology confers to the network relevant biological features: it is robust against random attacks, easily navigable and controllable and it is possible to infer new information from it. Indeed, the analysis of PIN showed that PKA and 26S proteasome were strongly interconnected and both were active in sperm signaling by influencing the protein phosphorylation pattern and then controlling several key events in sperm capacitation, such as membrane and cytoskeleton remodeling. In conclusion, the network model could explain many biological aspects of sperm physiology that are out of focus looking at the single molecular determinant, overcoming the reductionist approach which did not consider the complexity of molecules and their interactions. This could be helpful to identify potential diagnostic markers and therapeutic strategies concurring in explaining and approaching male infertility

    Fractal analysis of microCT images of the oviduct during the estrous cycle

    Get PDF
    It is well known that the oviduct plays a key role in several events deeply related with reproduction, such as sperm storage and capacitation, gametes interactions, fertilization and early embryo development, among others. To better understand some of the interactions and process occurring withing this organ, the study of its morphological modifications is of primordial importance. To that, we adopted a microtomografy (MicroTC) modelling system and the fractal analysis that allow to explore the 3D oviductal functional anatomy, by using eight swine oviducts at different stages of the estrous cycle. MicroCT datasets were acquired by using the high-resolution 3D-imaging system Skyscan 1172G (Bruker, Kontich – Belgium). CT images were analyzed using plugin on ImageJ software (NIH, Bethesda, MD), a box-counting method was applied to calculate the Fractal dimension of the oviduct. Focusing our attention on the utero-tubal junction (involved in sperm selection) and the isthmo-ampullar junction (the fertilization site). We found that by using PCA analysis it was possible to clearly differentiate the oviduct at different cycle stage on the basis of their values for: Db for grid, lacunarity for grid, R2 for Db, Media Db, lacunarity, σ for D for Db, Max for D, Min for D. Lacunarity, Media and Max for Db have a greater influence on the analysis. The results showed that 2 principal components were associated whit the morphological changes. This information, is obtained by a fast nondestructive method, and could be very useful because this innovative approach enables the achievement a 3D model and suggest that using fractal analysis techniques can aid to better understand the modifications of oviduct anatomy that depends on the neuroendocrine axis. This innovative approach could be a start point to design 3D cell culture systems, that could be applied in human and animal assisted reproductive techniques, improving the IVF outcomes

    Histology and carbohydrate histochemistry of the alimentary canal in the rainbow trout Oncorhinchus mykiss

    No full text
    A histological and histochemical analyses were carried out on the entire alimentary canal of the rainbow trout Oncorhynchus mykiss. In particular the oesophageal region showed presence of terminal β-D-galactose(1-3)-N- acetylgalactosamine and α-N-acetylgalactosamine. In the anterior and posterior regions of the stomach, lining epithelium and gastric pits exhibited the presence of β-gal and α-GalNAc. In addition sialoglycoconjugates having sialic acid-β-galactose(1-3)-N-acetylgalactosamine and sialic acid-N-acetylgalactosamine as terminal tri- and di-saccharides, were demonstrated. In proximal and distal intestine goblet cells showed the presence of sialoglyconjugates, having sialic acid-β-gal(1-3)-GalNAc and sialic acid-GalNAc as terminal sequences, belonging to N-linked chains. In the enterocytes of the entire intestine, terminal GlcNAc, α-Gal, α-fucose were found

    T-cell subpopulations express a different pattern of dopaminergic markers in intra- and extra-thymic compartments.

    No full text
    An involvement of dopamine in regulation of the immune function has been assessed and dopaminergic system has been found widely represented in thymus. Nevertheless detail on the characterization of dopaminergic system in assisting thymocytes development and lymphocytes mature physiology are still lacking. The present study was designed to characterize dopamine plasma membrane transporter (DAT), vesicular dopamine transporters (VMAT)-1 and -2, and dopamine D1-like and D2-like receptors in rat thymocytes, splenocytes and peripheral blood mononuclear cells. Western blot and RT-PCR analyses, performed on these cells, showed an expression of dopamine transporters and receptors during thymocyte development (when of CD4 and CD8 markers are differently expressed). Furthermore FACS analysis, indicates that DAT and dopamine D1-like receptors are expressed at high levels in thymocytes, splenocytes, and peripheral lymphocytes. The percentage of CD4+ CD8+ (double-positive) thymocytes expressing dopaminergic markers was significantly higher compared to the percentage of double-negative ones. The percentage of CD8+ single positive cells expressing dopaminergic markers was significantly higher than that of CD4+ cells. The results suggest that the dopaminergic system plays a role in the thymus microenvironment during T-cell development. The more pronounced expression of dopaminergic markers in CD8+ subsets suggests that dopamine plays a role in development of cytotoxic T-cells. Our findings indicate dopaminergic system to have a role during the maturation and selection of lymphocytes, and support its involvement in the active phases of immune response
    corecore