4,760 research outputs found

    Overview of Ingard and Maling’s1974 Paper on Physical Principles of Noise Reduction: Energy Considerations, Noise Reducing Elements and Sound Absorbing Materials

    Get PDF
    Overview of Ingard and Maling’s1974 Paper on Physical Principles of Noise Reduction: Energy Considerations, Noise Reducing Elements and Sound Absorbing Material

    Recognizing Focal Liver Lesions in Contrast-Enhanced Ultrasound with Discriminatively Trained Spatio-Temporal Model

    Full text link
    The aim of this study is to provide an automatic computational framework to assist clinicians in diagnosing Focal Liver Lesions (FLLs) in Contrast-Enhancement Ultrasound (CEUS). We represent FLLs in a CEUS video clip as an ensemble of Region-of-Interests (ROIs), whose locations are modeled as latent variables in a discriminative model. Different types of FLLs are characterized by both spatial and temporal enhancement patterns of the ROIs. The model is learned by iteratively inferring the optimal ROI locations and optimizing the model parameters. To efficiently search the optimal spatial and temporal locations of the ROIs, we propose a data-driven inference algorithm by combining effective spatial and temporal pruning. The experiments show that our method achieves promising results on the largest dataset in the literature (to the best of our knowledge), which we have made publicly available.Comment: 5 pages, 1 figure

    Joint Computation and Communication Cooperation for Mobile Edge Computing

    Full text link
    This paper proposes a novel joint computation and communication cooperation approach in mobile edge computing (MEC) systems, which enables user cooperation in both computation and communication for improving the MEC performance. In particular, we consider a basic three-node MEC system that consists of a user node, a helper node, and an access point (AP) node attached with an MEC server. We focus on the user's latency-constrained computation over a finite block, and develop a four-slot protocol for implementing the joint computation and communication cooperation. Under this setup, we jointly optimize the computation and communication resource allocation at both the user and the helper, so as to minimize their total energy consumption subject to the user's computation latency constraint. We provide the optimal solution to this problem. Numerical results show that the proposed joint cooperation approach significantly improves the computation capacity and the energy efficiency at the user and helper nodes, as compared to other benchmark schemes without such a joint design.Comment: 8 pages, 4 figure

    AlignFlow: Cycle Consistent Learning from Multiple Domains via Normalizing Flows

    Full text link
    Given datasets from multiple domains, a key challenge is to efficiently exploit these data sources for modeling a target domain. Variants of this problem have been studied in many contexts, such as cross-domain translation and domain adaptation. We propose AlignFlow, a generative modeling framework that models each domain via a normalizing flow. The use of normalizing flows allows for a) flexibility in specifying learning objectives via adversarial training, maximum likelihood estimation, or a hybrid of the two methods; and b) learning and exact inference of a shared representation in the latent space of the generative model. We derive a uniform set of conditions under which AlignFlow is marginally-consistent for the different learning objectives. Furthermore, we show that AlignFlow guarantees exact cycle consistency in mapping datapoints from a source domain to target and back to the source domain. Empirically, AlignFlow outperforms relevant baselines on image-to-image translation and unsupervised domain adaptation and can be used to simultaneously interpolate across the various domains using the learned representation.Comment: AAAI 202

    Accurate position tracking with a single UWB anchor

    Full text link
    Accurate localization and tracking are a fundamental requirement for robotic applications. Localization systems like GPS, optical tracking, simultaneous localization and mapping (SLAM) are used for daily life activities, research, and commercial applications. Ultra-wideband (UWB) technology provides another venue to accurately locate devices both indoors and outdoors. In this paper, we study a localization solution with a single UWB anchor, instead of the traditional multi-anchor setup. Besides the challenge of a single UWB ranging source, the only other sensor we require is a low-cost 9 DoF inertial measurement unit (IMU). Under such a configuration, we propose continuous monitoring of UWB range changes to estimate the robot speed when moving on a line. Combining speed estimation with orientation estimation from the IMU sensor, the system becomes temporally observable. We use an Extended Kalman Filter (EKF) to estimate the pose of a robot. With our solution, we can effectively correct the accumulated error and maintain accurate tracking of a moving robot.Comment: Accepted by ICRA202
    • …
    corecore