Accurate localization and tracking are a fundamental requirement for robotic
applications. Localization systems like GPS, optical tracking, simultaneous
localization and mapping (SLAM) are used for daily life activities, research,
and commercial applications. Ultra-wideband (UWB) technology provides another
venue to accurately locate devices both indoors and outdoors. In this paper, we
study a localization solution with a single UWB anchor, instead of the
traditional multi-anchor setup. Besides the challenge of a single UWB ranging
source, the only other sensor we require is a low-cost 9 DoF inertial
measurement unit (IMU). Under such a configuration, we propose continuous
monitoring of UWB range changes to estimate the robot speed when moving on a
line. Combining speed estimation with orientation estimation from the IMU
sensor, the system becomes temporally observable. We use an Extended Kalman
Filter (EKF) to estimate the pose of a robot. With our solution, we can
effectively correct the accumulated error and maintain accurate tracking of a
moving robot.Comment: Accepted by ICRA202