47,000 research outputs found
Shaping of molecular weight distribution using b-spline based predictive probability density function control
Issues of modelling and control of molecular weight distributions (MWDs) of polymerization products have been studied under the recently developed framework of stochastic distribution control, where the purpose is to design the required control inputs that can effectively shape the output probability density functions (PDFs) of the dynamic stochastic systems. The B-spline Neural Network has been implemented to approximate the function of MWDs provided by the mechanism model, based on which a new predictive PDF control strategy has been developed. A simulation study of MWD control of a pilot-plant styrene polymerization process has been given to demonstrate the effectiveness of the algorithms
Shaping of molecular weight distribution by iterative learning probability density function control strategies
A mathematical model is developed for the molecular weight distribution (MWD) of free-radical styrene polymerization in a simulated semi-batch reactor system. The generation function technique and moment method are employed to establish the MWD model in the form of Schultz-Zimmdistribution. Both static and dynamic models are described in detail. In order to achieve the closed-loop MWD shaping by output probability density function (PDF) control, the dynamic MWD model is further developed by a linear B-spline approximation. Based on the general form of the B-spline MWD model, iterative learning PDF control strategies have been investigated in order to improve the MWD control performance. Discussions on the simulation studies show the advantages and limitations of the methodology
A Survey of Positioning Systems Using Visible LED Lights
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe
Optical control of the spin state of two Mn atoms in a quantum dot
We report on the optical spectroscopy of the spin of two magnetic atoms (Mn)
embedded in an individual quantum dot interacting with either a single
electron, a single exciton and single trion. As a result of their interaction
to a common entity, the Mn spins become correlated. The dynamics of this
process is probed by time resolved spectroscopy, that permits to determine the
optical orientation time in the range of a few tens of . In addition, we
show that the energy of the collective spin states of the two Mn atoms can be
tuned through the optical Stark effect induced by a resonant laser field
Quantum -core conduction on the Bethe lattice
Classical and quantum conduction on a bond-diluted Bethe lattice is
considered. The bond dilution is subject to the constraint that every occupied
bond must have at least neighboring occupied bonds, i.e. -core
diluted. In the classical case, we find the onset of conduction for is
continuous, while for , the onset of conduction is discontinuous with the
geometric random first-order phase transition driving the conduction
transition. In the quantum case, treating each occupied bond as a random
scatterer, we find for that the random first-order phase transition in
the geometry also drives the onset of quantum conduction giving rise to a new
universality class of Anderson localization transitions.Comment: 12 pgs., 6 fig
- …