18,948 research outputs found

    Pion-photon and photon-pion transition form factors in light-cone formalism

    Full text link
    We derive the minimal Fock-state expansions of the pion and the photon wave functions in light-cone formalism, then we calculate the pion-photon and the photon-pion transition form factors of γ∗π0→γ\gamma ^{\ast}\pi ^{0}\to \gamma and γ∗γ→π0\gamma ^{\ast}\gamma \to \pi ^{0} processes by employing these quark-antiquark wave functions of the pion and the photon. We find that our calculation for the γ∗γ→π0\gamma ^{\ast}\gamma \to \pi ^{0} transition form factor agrees with the experimental data at low and moderately high energy scale. Moreover, the physical differences and inherent connections between the transition form factors of γ∗π0→γ\gamma ^{\ast}\pi ^{0}\to \gamma and γ∗γ→π0 \gamma ^{\ast}\gamma \to \pi ^{0} have been illustrated, which indicate that these two physical processes are intrinsically related. In addition, we also discuss the π0→γγ\pi ^{0}\to \gamma \gamma form factor and the decay width Γ(π→γγ) \mathit{\Gamma}(\pi \to \gamma \gamma) at Q2=0Q^{2}=0.Comment: 20 pages, 2 figure

    Visible-light induced emulsion photopolymerization with carbon nitride as stabilizer and photoinitiator

    Get PDF
    Photopolymerization is a common method in the synthesis of polymers with various applications. Herein, a simple and effective route for surfactant-free emulsion photopolymerization (EPP) under visible light irradiation is described. Therein, graphitic carbon nitride (g-CN) was utilized as an stabilizer and a photoinitiator at the same time. As such, g-CN provides the starting point for polymer chain growth and particle formation. Notably, the as-prepared polymer latexes are directly crosslinked by g-CN, and the existence of g-CN is confirmed inside of the particle, as well as outside, where it forms relatively stable latexes. Moreover, surface functionalized g-CN was utilized to tailor the g-CN/monomer interactions for improved particle formation. g-CN quantum dots with enhanced photoluminescence properties were introduced in EPP as well, providing polymer latexes with enhanced photoluminescence. The obtained polymer nanoparticles might be promising candidates for bioimaging applications
    • …
    corecore