11,420 research outputs found

    Tuning a binary ferromagnet into a multi-state synapse with spin-orbit torque induced plasticity

    Get PDF
    Inspired by ion-dominated synaptic plasticity in human brain, artificial synapses for neuromorphic computing adopt charge-related quantities as their weights. Despite the existing charge derived synaptic emulations, schemes of controlling electron spins in ferromagnetic devices have also attracted considerable interest due to their advantages of low energy consumption, unlimited endurance, and favorable CMOS compatibility. However, a generally applicable method of tuning a binary ferromagnet into a multi-state memory with pure spin-dominated synaptic plasticity in the absence of an external magnetic field is still missing. Here, we show how synaptic plasticity of a perpendicular ferromagnetic FM1 layer can be obtained when it is interlayer-exchange-coupled by another in-plane ferromagnetic FM2 layer, where a magnetic-field-free current-driven multi-state magnetization switching of FM1 in the Pt/FM1/Ta/FM2 structure is induced by spin-orbit torque. We use current pulses to set the perpendicular magnetization state which acts as the synapse weight, and demonstrate spintronic implementation of the excitatory/inhibitory postsynaptic potentials and spike timing-dependent plasticity. This functionality is made possible by the action of the in-plane interlayer exchange coupling field which leads to broadened, multi-state magnetic reversal characteristics. Numerical simulations, combined with investigations of a reference sample with a single perpendicular magnetized Pt/FM1/Ta structure, reveal that the broadening is due to the in-plane field component tuning the efficiency of the spin-orbit-torque to drive domain walls across a landscape of varying pinning potentials. The conventionally binary FM1 inside our Pt/FM1/Ta/FM2 structure with inherent in-plane coupling field is therefore tuned into a multi-state perpendicular ferromagnet and represents a synaptic emulator for neuromorphic computing.Comment: 37 pages with 11 figures, including 20 pages for manuscript and 17 pages for supplementary informatio

    Differential measurement of atmospheric refraction with a telescope with double fields of view

    Full text link
    For the sake of complete theoretical research of atmospheric refraction, the atmospheric refraction under the condition of lower angles of elevation is still worthy to be analyzed and explored. In some engineering applications, the objects with larger zenith distance must be observed sometimes. Carrying out observational research of the atmospheric refraction at lower angles of elevation has an important significance. It has been considered difficult to measure the atmospheric refraction at lower angles of elevation. A new idea for determining atmospheric refraction by utilizing differential measurement with double fields of view is proposed. Taking the observational principle of HIPPARCOS satellite as a reference, a schematic prototype with double fields of view was developed. In August of 2013, experimental observations were carried out and the atmospheric refractions at lower angles of elevation can be obtained by the schematic prototype. The measured value of the atmospheric refraction at the zenith distance of 78.8 degree is 240.23"±0.27"240.23"\pm0.27", and the feasibility of differential measurement of atmospheric refraction with double fields of view was justified. The limitations of the schematic prototype such as inadequate ability of gathering light, lack of accurate meteorological data recording and lower automatic level of observation and data processing were also pointed out, which need to be improved in subsequent work.Comment: 10 pages, 6 figure

    The luminosity function of Swift long gamma-ray bursts

    Get PDF
    The accumulation of Swift observed gamma-ray bursts (GRBs) has gradually made it possible to directly derive a GRB luminosity function (LF) from the observational luminosity distribution. However, two complexities are involved: (i) the evolving connection between GRB rate and cosmic star formation rate; and (ii) observational selection effects due to telescope thresholds and redshift measurements. With a phenomenological investigation of these two complexities, we constrain and discriminate two popular competing LF models (i.e. the broken-power-law LF and the single-power-law LF with an exponential cut-off at low luminosities). As a result, we find that the broken-power-law LF may be more favoured by observations, with a break luminosity L b= 2.5 × 10 52ergs -1 and prior- and post-break indices ν 1= 1.72 and ν 2= 1.98. Regarding an extra evolution effect expressed by a factor (1 +z) δ, if the metallicity of GRB progenitors is lower than ~0.1Z ⊙ as expected by some collapsar models, then there may be no extra evolution effect other than the metallicity evolution (i.e. δ approaches zero). Alternatively, if we remove the theoretical metallicity requirement, then a relationship between the degenerate parameters δ and Z max can be found, very roughly, δ~ 2.4(Z max/Z ⊙- 0.06). This indicates that extra evolution could become necessary for relatively high metallicities. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.published_or_final_versio

    Cosmological investigation of multi-frequency VLBI observations of ultra-compact structure in z∼3z\sim 3 radio quasars

    Get PDF
    In this paper, we use multi-frequency angular size measurements of 58 intermediate-luminosity quasars reaching the redshifts z∼3z\sim 3 and demonstrate that they can be used as standard rulers for cosmological inference. Our results indicate that, for the majority of radio-sources in our sample their angular sizes are inversely proportional to the observing frequency. From the physical point of view it means that opacity of the jet is governed by pure synchrotron self-absorption, i.e. external absorption does not play any significant role in the observed angular sizes at least up to 43 GHz. Therefore, we use the value of the intrinsic metric size of compact milliarcsecond radio quasars derived in a cosmology independent manner from survey conducted at 2 GHz and rescale it properly according to predictions of the conical jet model. This approach turns out to work well and produce quite stringent constraints on the matter density parameter Ωm\Omega_m in the flat Λ\LambdaCDM model and Dvali-Gabadadze-Porrati braneworld model. The results presented in this paper pave the way for the follow up engaging multi-frequency VLBI observations of more compact radio quasars with higher sensitivity and angular resolution.Comment: 10 pages, 5 figures, 2 table, accepted for publication in European Physical Journal
    • …
    corecore