104 research outputs found

    An Equal-Size Hard EM Algorithm for Diverse Dialogue Generation

    Full text link
    Open-domain dialogue systems aim to interact with humans through natural language texts in an open-ended fashion. Despite the recent success of super large dialogue systems such as ChatGPT, using medium-to-small-sized dialogue systems remains the common practice as they are more lightweight and accessible; however, generating diverse dialogue responses is challenging, especially with smaller models. In this work, we propose an Equal-size Hard Expectation--Maximization (EqHard-EM) algorithm to train a multi-decoder model for diverse dialogue generation. Our algorithm assigns a sample to a decoder in a hard manner and additionally imposes an equal-assignment constraint to ensure that all decoders are well-trained. We provide detailed theoretical analysis to justify our approach. Further, experiments on two large-scale open-domain dialogue datasets verify that our EqHard-EM algorithm generates high-quality diverse responses.Comment: Accepted by ICLR 202

    Isolation and complete genomic characterization of H1N1 subtype swine influenza viruses in southern China through the 2009 pandemic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The swine influenza (SI) is an infectious disease of swine and human. The novel swine-origin influenza A (H1N1) that emerged from April 2009 in Mexico spread rapidly and caused a human pandemic globally. To determine whether the tremendous virus had existed in or transmitted to pigs in southern China, eight H1N1 influenza strains were identified from pigs of Guangdong province during 2008-2009.</p> <p>Results</p> <p>Based on the homology and phylogenetic analyses of the nucleotide sequences of each gene segments, the isolates were confirmed to belong to the classical SI group, with HA, NP and NS most similar to 2009 human-like H1N1 influenza virus lineages. All of the eight strains were low pathogenic influenza viruses, had the same host range, and not sensitive to class of antiviral drugs.</p> <p>Conclusions</p> <p>This study provides the evidence that there is no 2009 H1N1-like virus emerged in southern China, but the importance of swine influenza virus surveillance in China should be given a high priority.</p

    The combination of deoxynivalenol and zearalenone at permitted feed concentrations causes serious physiological effects in young pigs

    Get PDF
    This study was to investigate the effects of the combination of deoxynivalenol (DON) and zearalenone (ZON) on pigs. Twenty-four weaning piglets were divided into a control group fed a diet free of mycotoxins and a toxin group fed a diet containing 1 mg/kg DON and 250 µg/kg ZON. The results showed that supplementation of DON and ZON in diets had extensive effects on pigs. More specifically, DON and ZON caused levels of total protein, albumin, and globulin in sera to decrease (p < 0.05) by 14.5%, 6.5% and 11.3%, respectively, and at the same time increased (p < 0.05) the serum enzyme activities of γ-glutamyltransferase, aspartate aminotransferase and alanine aminotransferase by 72.0%, 32.6% and 36.6%, respectively. In addition, DON and ZON decreased (p < 0.05) the level of anti-classical swine fever antibody titers by 14.8%. Real-time PCR showed that DON and ZON caused the mRNA expression levels of IFN-γ, TNF-α, IL-2, to decrease (p < 0.05) by 36.0%, 29.0% and 35.4%, respectively. Histopathological studies demonstrated that DON and ZON caused abnormalities in the liver, spleen, lymph nodes, uterus, and kidney. The concentrations of DON and ZON used in this study are in line with the published critical values permitted by BML. Our study clearly put the standard and adequacy of safety measures for these toxins into question. The authors suggest that with the increasing availability of cellular and molecular technologies, it is time to revisit the safety standards for toxins in feeds so as to make feeds safer, providing consumers with safer products

    Integrative transcriptomic profiling of mRNA, miRNA, circRNA, and lncRNA in alveolar macrophages isolated from PRRSV-infected porcine

    Get PDF
    IntroductionThe porcine reproductive and respiratory syndrome virus (PRRSV) continues to pose a significant threat to the global swine industry, attributed largely to its immunosuppressive properties and the chronic nature of its infection. The absence of effective vaccines and therapeutics amplifies the urgency to deepen our comprehension of PRRSV’s intricate pathogenic mechanisms. Previous transcriptomic studies, although informative, are partially constrained by their predominant reliance on in vitro models or lack of long-term infections. Moreover, the role of circular RNAs (circRNAs) during PRRSV invasion is yet to be elucidated.MethodsIn this study, we employed an in vivo approach, exposing piglets to a PRRSV challenge over varied durations of 3, 7, or 21 days. Subsequently, porcine alveolar macrophages were isolated for a comprehensive transcriptomic investigation, examining the expression patterns of mRNAs, miRNAs, circRNAs, and long non-coding RNAs (lncRNAs).ResultsDifferentially expressed RNAs from all four categories were identified, underscoring the dynamic interplay among these RNA species during PRRSV infection. Functional enrichment analyses indicate that these differentially expressed RNAs, as well as their target genes, play a pivotal role in immune related pathways. For the first time, we integrated circRNAs into the lncRNA-miRNA-mRNA relationship, constructing a competitive endogenous RNA (ceRNA) network. Our findings highlight the immune-related genes, CTLA4 and SAMHD1, as well as their associated miRNAs, lncRNAs, and circRNAs, suggesting potential therapeutic targets for PRRS. Importantly, we corroborated the expression patterns of selected RNAs through RT-qPCR, ensuring consistency with our transcriptomic sequencing data.DiscussionThis study sheds lights on the intricate RNA interplay during PRRSV infection and provides a solid foundation for future therapeutic strategizing

    Aerodynamic Characteristics of a Z-Shaped Folding Wing

    No full text
    Z-shaped folding wings have the potential to enhance the flight performance of an aircraft, contingent upon its mission requirements. However, the current scope of research on unmanned aerial vehicles (UAVs) with Z-shaped folding wings primarily focuses on the analysis of their folding structure and aeroelasticity-related vibrations. Computational fluid dynamics methods and dynamic meshing are employed to examine the folding process of Z-shaped folding wings. By comparing the steady aerodynamic characteristics of Z-shaped folding wings with those of conventional wings, this investigation explores the dynamic aerodynamic properties of Z-shaped folding wings at varying upward folding speeds. The numerical findings reveal that the folding of Z-shaped folding wings reduces the lift-to-drag ratio, yet simultaneously diminishes the nose-down pitching moment, thereby augmenting maneuverability. Concerning unsteady aerodynamics, the transient lift and drag coefficients of the folded wing initially increase and subsequently decrease as the folding angle increases at small angles of attack. Likewise, the nose-down pitching moment exhibits the same pattern in response to the folding angle. Additionally, the aerodynamic coefficients experience a slight decrease during the initial half of the folding process with increasing folding speed. Once the wing reaches approximately 40°~45° of folding, there is an abrupt change in the transient aerodynamic coefficients. Notably, this abrupt change is delayed with higher folding speeds, eventually converging to similar values across different folding speeds

    Bounds on feedback numbers of de Bruijn graphs, Taiwanese

    No full text
    Abstract. The feedback number of a graph G is the minimum number of vertices whose removal from G results in an acyclic subgraph. We use f (d, n) to denote the feedback number of the de Bruijn graph U B (d, n). R. Královic and P. Ruzicka [Minimum feedback vertex sets in shuffle-based interconnection networks. Information Processing Letters, 86 . This paper gives the upper bound o

    Feedback numbers of de Bruijn digraphs

    Get PDF
    AbstractA subset of vertices of a graph G is called a feedback vertex set of G if its removal results in an acyclic subgraph. Let f(d,n) denote the minimum cardinality over all feedback vertex sets of the de Bruijn digraph B(d,n). This paper proves that for any integers d≥2 and n≥2f(d,n)={1n∑i∣ndiφ(ni)for 2≤n≤4;dnn+O(ndn−4)for n≥5, where i∣n means i divides n, and φ(i) is the Euler totient function

    PEDV enters cells through clathrin-, caveolae-, and lipid raft-mediated endocytosis and traffics via the endo-/lysosome pathway

    No full text
    With the emergence of highly pathogenic variant strains, porcine epidemic diarrhea virus (PEDV) has led to significant economic loss in the global swine industry. Many studies have described how coronaviruses enter cells, but information on PEDV invasion strategies remains insufficient. Given that the differences in gene sequences and pathogenicity between classical and mutant strains of PEDV may lead to diverse invasion mechanisms, this study focused on the cellular entry pathways and cellular transport of the PEDV GI and GII subtype strains in Vero cells and IPEC-J2 cells. We first characterized the kinetics of PEDV entry into cells and found that the highest invasion rate of PEDV was approximately 33% in the IPEC-J2 cells and approximately 100% in the Vero cells. To clarify the specific endocytic pathways, systematic research methods were used and showed that PEDV enters cells via the clathrin- and caveolae-mediated endocytosis pathways, in which dynamin II, clathrin heavy chain, Eps15, cholesterol, and caveolin-1 were indispensably involved. In addition, lipid raft extraction assay showed that PEDV can also enter cells through lipid raft-mediated endocytosis. To investigate the trafficking of internalized PEDV, we found that PEDV entry into cells relied on low pH and internalized virions reached lysosomes through the early endosome–late endosome–lysosome pathway. The results concretely revealed the entry mechanisms of PEDV and provided an insightful theoretical basis for the further understanding of PEDV pathogenesis and guidance for new targets of antiviral drugs
    • …
    corecore