10 research outputs found

    Comparative Analysis of the Complete Mitochondrial Genomes for Development Application

    Get PDF
    This present research work reports the comparative analysis of the entire nucleotide sequence of mitochondrial genomes of Serranochromis robustus and Buccochromis nototaenia and phylogenetic analyses of their protein-coding genes in order to establish their phylogenetic relationship within Cichlids. The mitochondrial genomes of S. robustus and B. nototaenia are 16,583 and 16,580 base pairs long, respectively, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, 22 transfer RNA genes, and one control region (D-loop) which is 888 and 887 base pairs long, respectively, showing the same gene order and identical number of gene or regions with other well-elucidated mitogenomes of Cichlids. However, with exception of cytochrome-c oxidase subunit-1 (COX-1) gene, all the identified PCGs were initiated by ATG-codons. Structurally, 11 tRNA genes in B. nototaenia species and 9 tRNA genes in S. robustus species, folded into typical clover-leaf secondary structure created by the regions of self-complementarity within tRNA. All the 22 tRNA genes in both species lack variable loop. Moreover, 28 genes which include 12-protein-coding genes are encoded on the H-strand and the remaining 9 genes including one protein-coding gene are encoded on the L-strand. Thirteen sequences of concatenated mitochondrial protein-coding genes were aligned using MUSCLE, and the phylogenetic analyses performed using maximum likelihood and Bayesian inference showed that S. robustus and B. nototaenia had a broad phylogenetic relationship. These results may be a useful tool in resolving higher-level relationships in organisms and a useful dataset for studying the evolution of the Cichlidae mitochondrial genome, since Cichlids are well-known model species in the study of evolutionary biology, because of their extreme morphological, biogeographical, parental care behavior for eggs and larvae and phylogenetic diversities

    Removal of Formaldehyde and Its Analogues Using a Hybrid Assembly of Pyrene-Modified Hydrazide and rGO: A Negative Carbon Emission and Green Chemical Decomposition Method

    No full text
    Indoor gaseous formaldehyde is the main environmental pollutant that can cause fatal threats to human health. A number of physical and chemical methods have been developed to tackle this issue. However, the existing methods are still unsatisfactory to meet the requirement of sustainable development owing to the flaws of low efficiency and reversible or second pollution. Herein, a chemical method based on a nucleophilic reaction between hydrazine and aldehyde that generates the only by-product of H2O is designed for the removal of formaldehyde. 1-Pyrenebutyric hydrazide was synthesized by a simple esterification reaction and then self-assembled on reduced graphene oxide (rGO) with a large surface area by forming π–π stacking to obtain a composite for chemical removal of gaseous formaldehyde under ambient conditions. In a practical test, the formaldehyde removal rate could reach 91% of the theoretical value, which meets the requirement for commercial formaldehyde removal applications. After 10 times recycling, the formaldehyde removal rate still remains as high as 85%. Moreover, the composite could be regenerated in weak acidic media, which greatly reduce the manufacturing cost in practical applications

    Alternative transcribed 3' isoform of long non-coding RNA Malat1 inhibits mouse retinal oxidative stress

    No full text
    Summary: The function of the cancer-associated lncRNA Malat1 during aging is as-of-yet uncharacterized. Here, we show that Malat1 interacts with Nucleophosmin (NPM) in young mouse brain, and with Lamin A/C, hnRNP C, and KAP1 with age. RNA-seq and RT-qPCR reveal a persistent expression of Malat1_2 (the 3’isoform of Malat1) in Malat1Δ1 (5’-1.5 kb deletion) mouse retinas and brains at 1/4th level of the full-length Malat1, while Malat1_1 (the 5’isoform) in Malat1Δ2 (deletion of 3’-conserved 5.7 kb) at a much lower level, suggesting an internal promoter driving the 3’ isoform. The 1774 and 496 differentially expressed genes in Malat1Δ2 and Malat1Δ1 brains, respectively, suggest the 3’ isoform regulates gene expression in trans and the 5’ isoform in cis. Consistently, Malat1Δ2 mice show increased age-dependent retinal oxidative stress and corneal opacity, while Malat1Δ1 mice show no obvious phenotype. Collectively, this study reveals a physiological function of the lncRNA Malat1 3’-isoform during the aging process
    corecore