52 research outputs found

    Comparative Analysis of Opioid Use Between Robotic and Open Pancreatoduodenectomy

    Get PDF
    BACKGROUND/PURPOSE: Risk-stratified pancreatectomy clinical pathways using regional anesthesia and multimodality analgesia have decreased overall opioid use, but the additional benefits of robotic surgery in opioid reduction for pancreatoduodenectomy (PD) are unknown. We compared the inpatient opioid use between robotic PD and open PD. METHODS: Patients undergoing open PD within a protocol evaluating preincisional regional anesthetic block bundles were compared to consecutively-treated patients undergoing robotic PD identified from a prospectively maintained single-institutional database. Clinical characteristics, operative outcomes, pain scores and inpatient oral morphine equivalent (OME) use were compared between patients treated with robotic or open PD. Patients with a history of continuous-release opioid dependence were excluded. RESULTS: Of 114 total patients, 25 underwent robotic PD and 89 underwent open PD. Intraoperative opioid use was not different (P = .87), nor were cumulative pain scores. Robotic PD patients used significantly fewer OMEs per day on postoperative days 1-4 (P = .039), used fewer total OMEs during hospitalization (robotic: median = 79, IQR 42.5-141; open: median = 126, IQR 61.3-203.8; P = .0036) and were discharged with fewer OMEs (robotic: median = 0, IQR 0-43.8; open: median = 25, IQR 0-75; P = .009) despite a shorter length of stay (robotic: median = 4, open: median = 5, P = .002). CONCLUSIONS: Robotic PD patients required fewer inpatient OMEs than open PD while maintaining similar pain scores. A higher percentage of robotic PD patients tapered off of opioids prior to discharge than open surgery patients treated with a standardized opioid reduction protocol despite a shorter length of stay. These results provide a rationale for choosing robotic PD when feasible to minimize opioid use

    The Gut Microbiome as a Biomarker and Therapeutic Target in Hepatocellular Carcinoma

    Get PDF
    The microbiome is pivotal in maintaining health and influencing disease by modulating essential inflammatory and immune responses. Hepatocellular carcinoma (HCC), ranking as the third most common cause of cancer-related fatalities globally, is influenced by the gut microbiome through bidirectional interactions between the gut and liver, as evidenced in both mouse models and human studies. Consequently, biomarkers based on gut microbiota represent promising non-invasive tools for the early detection of HCC. There is a growing body of evidence suggesting that the composition of the gut microbiota may play a role in the efficacy of immunotherapy in different types of cancer; thus, it could be used as a predictive biomarker. In this review, we will dissect the gut microbiome\u27s role as a potential predictive and diagnostic marker in HCC and evaluate the latest progress in leveraging the gut microbiome as a novel therapeutic avenue for HCC patients, with a special emphasis on immunotherapy

    The Gut Microbiome as a Biomarker and Therapeutic Target in Hepatocellular Carcinoma

    Get PDF
    The microbiome is pivotal in maintaining health and influencing disease by modulating essential inflammatory and immune responses. Hepatocellular carcinoma (HCC), ranking as the third most common cause of cancer-related fatalities globally, is influenced by the gut microbiome through bidirectional interactions between the gut and liver, as evidenced in both mouse models and human studies. Consequently, biomarkers based on gut microbiota represent promising non-invasive tools for the early detection of HCC. There is a growing body of evidence suggesting that the composition of the gut microbiota may play a role in the efficacy of immunotherapy in different types of cancer; thus, it could be used as a predictive biomarker. In this review, we will dissect the gut microbiome\u27s role as a potential predictive and diagnostic marker in HCC and evaluate the latest progress in leveraging the gut microbiome as a novel therapeutic avenue for HCC patients, with a special emphasis on immunotherapy

    Clinical and Prognostic Biomarker Value of Blood-Circulating Inflammatory Cytokines in Hepatocellular Carcinoma

    Get PDF
    INTRODUCTION: Circulating inflammatory cytokines play critical roles in tumor-associated inflammation and immune responses. Recent data have suggested that several interleukins (ILs) mediate carcinogenesis in hepatocellular carcinoma (HCC). However, the predictive and prognostic value of circulating ILs is yet to be validated. Our study aimed to evaluate the association of the serum ILs with overall survival (OS) and clinicopathologic features in a large cohort of HCC patients. METHODS: We prospectively collected data and serum samples from 767 HCC patients treated at the University of Texas MD Anderson Cancer Center between 2001 and 2014, with a median follow-up of 67.4 months (95% confidence interval [CI]: 52.5, 83.3). Biomarker association with OS was evaluated by the log-rank method. RESULTS: The median OS in this cohort was 14.2 months (95% CI: 12, 16.1 months). Clinicopathologic features were more advanced, and OS was significantly inferior in patients with high circulating levels of IL1-R1, IL-6, IL-8, IL-10, IL-15, IL-16, and IL-18. CONCLUSION: Our study shows that several serum IL levels are valid prognostic biomarker candidates and potential targets for therapy in HCC

    High-Contrast Detection of Somatostatin Receptor Subtype-2 for Fluorescence-Guided Surgery

    Get PDF
    Dye design can influence the ability of fluorescently labeled imaging agents to generate tumor contrast and has become an area of significant interest in the field of fluorescence-guided surgery (FGS). Here, we show that the charge-balanced near-infrared fluorescent (NIRF) dye FNIR-Tag enhances the imaging properties of a fluorescently labeled somatostatin analogue

    Complementarity of ultrasound and fluorescence imaging in an orthotopic mouse model of pancreatic cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic cancer is a devastating disease characterized by dismal 5-year survival rates and limited treatment options. In an effort to provide useful models for preclinical evaluation of new experimental therapeutics, we and others have developed orthotopic mouse models of pancreatic cancer. The utility of these models for pre-clinical testing is dependent upon quantitative, noninvasive methods for monitoring <it>in vivo </it>tumor progression in real time. Toward this goal, we performed whole-body fluorescence imaging and ultrasound imaging to evaluate and to compare these noninvasive imaging modalities for assessing tumor burden and tumor progression in an orthotopic mouse model of pancreatic cancer.</p> <p>Methods</p> <p>The human pancreatic cancer cell line XPA-1, engineered for stable, high-level expression of red fluorescent protein (RFP), was implanted into the pancreas of nude mice using orthotopic implantation. The tumors were allowed to grow over a period of one to several weeks during which time the mice were imaged using both fluorescence imaging and ultrasound imaging to measure tumor burden and to monitor tumor growth.</p> <p>Results</p> <p>Whole-body fluorescence imaging and ultrasound imaging both allowed for the visualization and measurement of orthotopic pancreatic tumor implants <it>in vivo</it>. The imaging sessions were well-tolerated by the mice and yielded data which correlated well in the quantitative assessment of tumor burden. Whole-body fluorescence and two-dimensional ultrasound imaging showed a strong correlation for measurement of tumor size over a range of tumor sizes (R<sup>2 </sup>= 0.6627, P = 0.003 for an exposure time of 67 msec and R<sup>2 </sup>= 0.6553, P = 0.003 for an exposure time of 120 msec).</p> <p>Conclusion</p> <p>Our findings suggest a complementary role for fluorescence imaging and ultrasound imaging in assessing tumor burden and tumor progression in orthotopic mouse models of human cancer.</p

    A new mild hyperthermia device to treat vascular involvement in cancer surgery

    Get PDF
    Abstract Surgical margin status in cancer surgery represents an important oncologic parameter affecting overall prognosis. The risk of disease recurrence is minimized and survival often prolonged if margin-negative resection can be accomplished during cancer surgery. Unfortunately, negative margins are not always surgically achievable due to tumor invasion into adjacent tissues or involvement of critical vasculature. Herein, we present a novel intra-operative device created to facilitate a uniform and mild heating profile to cause hyperthermic destruction of vessel-encasing tumors while safeguarding the encased vessel. We use pancreatic ductal adenocarcinoma as an in vitro and an in vivo cancer model for these studies as it is a representative model of a tumor that commonly involves major mesenteric vessels. In vitro data suggests that mild hyperthermia (41–46 °C for ten minutes) is an optimal thermal dose to induce high levels of cancer cell death, alter cancer cell’s proteomic profiles and eliminate cancer stem cells while preserving non-malignant cells. In vivo and in silico data supports the well-known phenomena of a vascular heat sink effect that causes high temperature differentials through tissues undergoing hyperthermia, however temperatures can be predicted and used as a tool for the surgeon to adjust thermal doses delivered for various tumor margins

    Brain Metastases from Biliary Tract Cancer: Case Series and Clinicogenomic Analysis

    Get PDF
    BACKGROUND: Limited data from small series have suggested that brain metastases from biliary tract cancers (BrM-BTC) affect ≤2% of patients with BTC. We sought to review our experience with patients with BrM-BTC and to identify associations of tumor-related molecular alterations with outcomes. MATERIALS AND METHODS: A retrospective review of patients with BTC seen at a tertiary referral center from 2005 to 2021 was performed; patients with BrM-BTC were identified, and clinical and molecular data were collected. RESULTS: Twenty-one of 823 patients with BTC (2.6%) developed BrM. For patients with BrM-BTC, median follow-up time was 27.9 months after primary BTC diagnosis and 3.1 months after BrM diagnosis. Median time from primary diagnosis to diagnosis of BrM was 14.4 [range, 1.1-66.0] months. Median overall survival (OS) from primary diagnosis was 31.5 [2.9-99.8] months and median OS from BrM diagnosis was 4.2 [0.2-33.8] months. Patients who underwent BrM-directed therapy trended toward longer OS following BrM diagnosis than patients receiving supportive care only (median 6.5 vs 0.8 months, P = .060). The BrM-BTC cohort was enriched for BRAF (30%), PIK3CA (25%), and GNAS (20%) mutations. patients with BrM-BTC with BRAF mutations trended toward longer OS following BrM diagnosis (median 13.1 vs 4.2 months, P = .131). CONCLUSION: This is the largest series of patients with BrM-BTC to date and provides molecular characterization of this rare subgroup of patients with BTC. Patients with BrM-BTC may be more likely to have BRAF mutations. With advances in targeted therapy for patients with BTC with actionable mutations, continued examination of shifting patterns of failure, with emphasis on BrM, is warranted

    Escalated-Dose Radiotherapy for Unresected Locally Advanced Pancreatic Cancer: Patterns of Care and Survival in the United States

    Get PDF
    INTRODUCTION: With locally advanced pancreatic cancer (LAPC), uncontrolled local tumor growth frequently leads to mortality. Advancements in radiotherapy (RT) techniques have enabled conformal delivery of escalated-dose RT (EDR), which may have potential local control and overall survival (OS) benefits based on retrospective and early prospective studies. With evidence for EDR emerging, we characterized the adoption of EDR across the United States and its associated outcomes. METHODS: We searched the National Cancer Database for nonsurgically managed LAPC patients diagnosed between 2004 and 2019. Pancreas-directed RT with biologically effective doses (BED10) ≥39 and ≤70 Gy was labeled conventional-dose RT (CDR), and BED10 \u3e70 and ≤132 Gy was labeled EDR. We identified associations of EDR and OS using logistic and Cox regressions, respectively. RESULTS: Among the definitive therapy subset (n = 54,115) of the entire study cohort (n = 91,493), the most common treatments were chemotherapy alone (69%), chemotherapy and radiation (29%), and RT alone (2%). For the radiation therapy subset (n = 16,978), use of pancreas-directed RT remained between 13% and 17% over the study period (ptrend \u3e 0.999). Using multivariable logistic regression, treatment at an academic/research facility (adjusted odds ratio [aOR] 1.46, p \u3c 0.001) and treatment between 2016 and 2019 (aOR 2.54, p \u3c 0.001) were associated with greater receipt of EDR, whereas use of chemotherapy (aOR 0.60, p \u3c 0.001) was associated with less receipt. Median OS estimates for EDR and CDR were 14.5 months and 13.0 months (p \u3c 0.0001), respectively. For radiation therapy subset patients with available survival data (n = 13,579), multivariable Cox regression correlated EDR (adjusted hazard ratio 0.85, 95% confidence interval 0.80-0.91; p \u3c 0.001) with longer OS versus CDR. DISCUSSION AND CONCLUSIONS: Utilization of EDR has increased since 2016, but overall utilization of RT for LAPC has remained at less than one in five patients for almost two decades. These real-world results additionally provide an estimate of effect size of EDR for future prospective trials

    Fluorescence laparoscopy imaging of pancreatic tumor progression in an orthotopic mouse model

    Get PDF
    The use of fluorescent proteins to label tumors is revolutionizing cancer research, enabling imaging of both primary and metastatic lesions, which is important for diagnosis, staging, and therapy. This report describes the use of fluorescence laparoscopy to image green fluorescent protein (GFP)-expressing tumors in an orthotopic mouse model of human pancreatic cancer. The orthotopic mouse model of human pancreatic cancer was established by injecting GFP-expressing MiaPaCa-2 human pancreatic cancer cells into the pancreas of 6-week-old female athymic mice. On postoperative day 14, diagnostic laparoscopy using both white and fluorescent light was performed. A standard laparoscopic system was modified by placing a 480-nm short-pass excitation filter between the light cable and the laparoscope in addition to using a 2-mm-thick emission filter. A camera was used that allowed variable exposure time and gain setting. For mouse laparoscopy, a 3-mm 0° laparoscope was used. The mouse’s abdomen was gently insufflated to 2 mm Hg via a 22-gauge angiocatheter. After laparoscopy, the animals were sacrificed, and the tumors were collected and processed for histologic review. The experiments were performed in triplicate. Fluorescence laparoscopy enabled rapid imaging of the brightly fluorescent tumor in the pancreatic body. Use of the proper filters enabled simultaneous visualization of the tumor and the surrounding structures with minimal autofluorescence. Fluorescence laparoscopy thus allowed exact localization of the tumor, eliminating the need to switch back and forth between white and fluorescence lighting, under which the background usually is so darkened that it is difficult to maintain spatial orientation. The use of fluorescence laparoscopy permits the facile, real-time imaging and localization of tumors labeled with fluorescent proteins. The results described in this report should have important clinical potential
    • …
    corecore