1,484 research outputs found
Turbulent convection model in the overshooting region: II. Theoretical analysis
Turbulent convection models are thought to be good tools to deal with the
convective overshooting in the stellar interior. However, they are too complex
to be applied in calculations of stellar structure and evolution. In order to
understand the physical processes of the convective overshooting and to
simplify the application of turbulent convection models, a semi-analytic
solution is necessary.
We obtain the approximate solution and asymptotic solution of the turbulent
convection model in the overshooting region, and find some important properties
of the convective overshooting:
I. The overshooting region can be partitioned into three parts: a thin region
just outside the convective boundary with high efficiency of turbulent heat
transfer, a power law dissipation region of turbulent kinetic energy in the
middle, and a thermal dissipation area with rapidly decreasing turbulent
kinetic energy. The decaying indices of the turbulent correlations ,
, and are only determined by the parameters of the
TCM, and there is an equilibrium value of the anisotropic degree .
II. The overshooting length of the turbulent heat flux is
about ().
III. The value of the turbulent kinetic energy at the convective boundary
can be estimated by a method called \textsl{the maximum of diffusion}.
Turbulent correlations in the overshooting region can be estimated by using
and exponentially decreasing functions with the decaying indices.Comment: 32 pages, 9 figures, Accepted by The Astrophysical Journa
Spectral methods for exterior elliptic problems
Spectral approximations for exterior elliptic problems in two dimensions are discussed. As in the conventional finite difference or finite element methods, the accuracy of the numerical solutions is limited by the order of the numerical farfield conditions. A spectral boundary treatment is introduced at infinity which is compatible with the infinite order interior spectral scheme. Computational results are presented to demonstrate the spectral accuracy attainable. Although a simple Laplace problem is examined, the analysis covers more complex and general cases
Linear and Nonlinear Evolution and Diffusion Layer Selection in Electrokinetic Instability
In the present work fournontrivial stages of electrokinetic instability are
identified by direct numerical simulation (DNS) of the full
Nernst-Planck-Poisson-Stokes (NPPS) system: i) The stage of the influence of
the initial conditions (milliseconds); ii) 1D self-similar evolution
(milliseconds-seconds); iii) The primary instability of the self-similar
solution (seconds); iv) The nonlinear stage with secondary instabilities. The
self-similar character of evolution at intermediately large times is confirmed.
Rubinstein and Zaltzman instability and noise-driven nonlinear evolution to
over-limiting regimes in ion-exchange membranes are numerically simulated and
compared with theoretical and experimental predictions. The primary instability
which happens during this stage is found to arrest self-similar growth of the
diffusion layer and specifies its characteristic length as was first
experimentally predicted by Yossifon and Chang (PRL 101, 254501 (2008)). A
novel principle for the characteristic wave number selection from the
broadbanded initial noise is established.Comment: 13 pages, 8 figure
Cooling of pulsars
Cooling rates are calculated for superfluid neutron stars of about one solar mass and 10 km radius, with magnetic fields from zero to about 10 to the 14th power Gauss, when possible internal friction effects are neglected. The results show that most old pulsars are so cold that thermal ionization of surface atoms would be negligible. At an age of a million years and with canonical magnetic fields of 10 to the 12th power Gauss, the estimated stellar surface temperature is several thousand to a hundred thousand degrees. However, if we neglect magnetic fields and superfluid states of nucleons, the same surfaces would be about a million degrees
Modification of three-dimensional transition in the wake of a rotationally oscillating cylinder
A study of the flow past an oscillatory rotating cylinder has been conducted, where the frequency of oscillation has been matched to the natural frequency of the vortex street generated in the wake of a stationary cylinder, at Reynolds number 300. The focus is on the wake transition to three-dimensional flow and, in particular, the changes induced in this transition by the addition of the oscillatory rotation. Using Floquet stability analysis, it is found that the fine-scale three-dimensional mode that typically dominates the wake at a Reynolds number beyond that at the second transition to three-dimensional flow (referred to as mode B) is suppressed for amplitudes of rotation beyond a critical amplitude, in agreement with past studies. However, the rotation does not suppress the development of three-dimensionality completely, as other modes are discovered that would lead to three-dimensional flow. In particular, the longer-wavelength mode that leads the three-dimensional transition in the wake of a stationary cylinder (referred to as mode A) is left essentially unaffected at low amplitudes of rotation. At higher amplitudes of oscillation, mode A is also suppressed as the two-dimensional near wake changes in character from a single- to a double- row wake; however, another mode is predicted to render the flow three-dimensional, dubbed mode D (for double row). This mode has the same spatio-temporal symmetries as mode A
On statistically stationary homogeneous shear turbulence
A statistically stationary turbulence with a mean shear gradient is realized
in a flow driven by suitable body forces. The flow domain is periodic in
downstream and spanwise directions and bounded by stress free surfaces in the
normal direction. Except for small layers near the surfaces the flow is
homogeneous. The fluctuations in turbulent energy are less violent than in the
simulations using remeshing, but the anisotropy on small scales as measured by
the skewness of derivatives is similar and decays weakly with increasing
Reynolds number.Comment: 4 pages, 5 figures (Figs. 3 and 4 as external JPG-Files
Mixed Layer Sub-Mesoscale Parameterization - Part 1: Derivation and Assessment
Several studies have shown that sub-mesoscales (SM 1km horizontal scale) play an important role in mixed layer dynamics. In particular, high resolution simulations have shown that in the case of strong down-front wind, the re-stratification induced by the SM is of the same order of the de-stratification induced by small scale turbulence, as well as of that induced by the Ekman velocity. These studies have further concluded that it has become necessary to include SM in ocean global circulation models (OGCMs), especially those used in climate studies. The goal of our work is to derive and assess an analytic parameterization of the vertical tracer flux under baroclinic instabilities and wind of arbitrary directions and strength. To achieve this goal, we have divided the problem into two parts: first, in this work we derive and assess a parameterization of the SM vertical flux of an arbitrary tracer for ocean codes that resolve mesoscales, M, but not sub-mesoscales, SM. In Part 2, presented elsewhere, we have used the results of this work to derive a parameterization of SM fluxes for ocean codes that do not resolve either M or SM. To carry out the first part of our work, we solve the SM dynamic equations including the non-linear terms for which we employ a closure developed and assessed in previous work. We present a detailed analysis for down-front and up-front winds with the following results: (a) down-front wind (blowing in the direction of the surface geostrophic velocity) is the most favorable condition for generating vigorous SM eddies; the de-stratifying effect of the mean flow and re-stratifying effect of SM almost cancel each other out
Comparison of Four Mixed Layer Mesoscale Parameterizations and the Equation for an Arbitrary Tracer
In this paper we discuss two issues, the inter-comparison of four mixed layer mesoscale parameterizations and the search for the eddy induced velocity for an arbitrary tracer. It must be stressed that our analysis is limited to mixed layer mesoscales since we do not treat sub-mesoscales and small turbulent mixing. As for the first item, since three of the four parameterizations are expressed in terms of a stream function and a residual flux of the RMT formalism (residual mean theory), while the fourth is expressed in terms of vertical and horizontal fluxes, we needed a formalism to connect the two formulations. The standard RMT representation developed for the deep ocean cannot be extended to the mixed layer since its stream function does not vanish at the ocean's surface. We develop a new RMT representation that satisfies the surface boundary condition. As for the general form of the eddy induced velocity for an arbitrary tracer, thus far, it has been assumed that there is only the one that originates from the curl of the stream function. This is because it was assumed that the tracer residual flux is purely diffusive. On the other hand, we show that in the case of an arbitrary tracer, the residual flux has also a skew component that gives rise to an additional bolus velocity. Therefore, instead of only one bolus velocity, there are now two, one coming from the curl of the stream function and other from the skew part of the residual flux. In the buoyancy case, only one bolus velocity contributes to the mean buoyancy equation since the residual flux is indeed only diffusive
A Comparison of Measured Crab and Vela Glitch Healing Parameters with Predictions of Neutron Star Models
There are currently two well-accepted models that explain how pulsars exhibit
glitches, sudden changes in their regular rotational spin-down. According to
the starquake model, the glitch healing parameter, Q, which is measurable in
some cases from pulsar timing, should be equal to the ratio of the moment of
inertia of the superfluid core of a neutron star (NS) to its total moment of
inertia. Measured values of the healing parameter from pulsar glitches can
therefore be used in combination with realistic NS structure models as one test
of the feasibility of the starquake model as a glitch mechanism. We have
constructed NS models using seven representative equations of state of
superdense matter to test whether starquakes can account for glitches observed
in the Crab and Vela pulsars, for which the most extensive and accurate glitch
data are available. We also present a compilation of all measured values of Q
for Crab and Vela glitches to date which have been separately published in the
literature. We have computed the fractional core moment of inertia for stellar
models covering a range of NS masses and find that for stable NSs in the
realistic mass range 1.4 +/- 0.2 solar masses, the fraction is greater than
0.55 in all cases. This range is not consistent with the observational
restriction Q < 0.2 for Vela if starquakes are the cause of its glitches. This
confirms results of previous studies of the Vela pulsar which have suggested
that starquakes are not a feasible mechanism for Vela glitches. The much larger
values of Q observed for Crab glitches (Q > 0.7) are consistent with the
starquake model predictions and support previous conclusions that starquakes
can be the cause of Crab glitches.Comment: 8 pages, including 3 figures and 1 table. Accepted for publication in
Ap
- ā¦