4,072 research outputs found
Cyclic Universe and Infinite Past
We address two questions about the past for infinitely cyclic cosmology. The
first is whether it can contain an infinite length null geodesic into the past
in view of the Borde-Guth-Vilenkin (BGV) "no-go" theorem, The second is
whether, given that a small fraction of spawned universes fail to cycle, there
is an adequate probability for a successful universe after an infinite time. We
give positive answers to both questions then show that in infinite cyclicity
the total number of universes has been infinite for an arbitrarily long time.Comment: 7 pages. Clarification in discussion of infinite pas
Base composition of intact nucleic acid oligomers
Base composition of intact nucleic acid oligomer
Repetitions in the polypeptide sequence of cytochromes
Protein evolution from peptides, gene duplications and deletions in polypeptides and cytochrome
Stretching of a single-stranded DNA: Evidence for structural transition
Recent experiments have shown that the force-extension (F-x) curve for
single-stranded DNA (ssDNA) consisting only of adenine [poly(dA)] is
significantly different from thymine [poly(dT)]. Here, we show that the base
stacking interaction is not sufficient to describe the F-x curves as seen in
the experiments. A reduction in the reaction co-ordinate arising from the
formation of helix at low forces and an increase in the distance between
consecutive phosphates of unstacked bases in the stretched state at high force
in the proposed model, qualitatively reproduces the experimentally observed
features. The multi-step plateau in the F-x curve is a signature of structural
change in ssDNA.Comment: 10 pages, 4 figure
Analysis of Accordion DNA Stretching Revealed by The Gold Cluster Ruler
A promising new method for measuring intramolecular distances in solution
uses small-angle X-ray scattering interference between gold nanocrystal labels
(Mathew-Fenn et al, Science, 322, 446 (2008)). When applied to double stranded
DNA, it revealed that the DNA length fluctuations are strikingly strong and
correlated over at least 80 base pair steps. In other words, the DNA behaves as
accordion bellows, with distant fragments stretching and shrinking concertedly.
This hypothesis, however, disagrees with earlier experimental and computational
observations. This Letter shows that the discrepancy can be rationalized by
taking into account the cluster exclusion volume and assuming a moderate
long-range repulsion between them. The long-range interaction can originate
from an ion exclusion effect and cluster polarization in close proximity to the
DNA surface.Comment: 9 pages, 4 figures, to appear in Phys. Rev.
Size, shape, and flexibility of RNA structures
Determination of sizes and flexibilities of RNA molecules is important in
understanding the nature of packing in folded structures and in elucidating
interactions between RNA and DNA or proteins. Using the coordinates of the
structures of RNA in the Protein Data Bank we find that the size of the folded
RNA structures, measured using the radius of gyration, , follows the Flory
scaling law, namely, \AA where N is the number of
nucleotides. The shape of RNA molecules is characterized by the asphericity
and the shape parameters that are computed using the eigenvalues
of the moment of inertia tensor. From the distribution of , we find
that a large fraction of folded RNA structures are aspherical and the
distribution of values shows that RNA molecules are prolate (). The
flexibility of folded structures is characterized by the persistence length
. By fitting the distance distribution function to the worm-like
chain model we extracted the persistence length . We find that \AA. The dependence of on implies the average length of
helices should increases as the size of RNA grows. We also analyze packing in
the structures of ribosomes (30S, 50S, and 70S) in terms of , ,
, and . The 70S and the 50S subunits are more spherical compared to
most RNA molecules. The globularity in 50S is due to the presence of an
unusually large number (compared to 30S subunit) of small helices that are
stitched together by bulges and loops. Comparison of the shapes of the intact
70S ribosome and the constituent particles suggests that folding of the
individual molecules might occur prior to assembly.Comment: 28 pages, 8 figures, J. Chem. Phys. in pres
Endosome pH measured in single cells by dual fluorescence flow cytometry: rapid acidification of insulin to pH 6
The acidification of various ligands was measured on a cell by cell basis for cell suspensions by correlated dual fluorescence flow cytometry. Mouse 3T3 cells were incubated with a mixture of fluorescein- and rhodamine-conjugated ligands, and the ratio of fluorescein and rhodamine fluorescence was used as a measure of endosome pH. The calibration of this ratio by both fluorometry and flow cytometry is described. Dual parameter histograms of average endosome pH per cell versus amount of internalization were calculated from this data, for samples in the absence and presence of chloroquine added to neutralize acidic cellular vesicles. The kinetics of acidification of insulin were measured and compared with previous results obtained with the chloroquine ratio technique. Rapid acidification of internalized ligand was observed both for insulin, which was mostly internalized via nonspecific pathways, and for alpha 2-macroglobulin, which was mainly internalized by specific receptor-mediated endocytosis. The average pH observed for internalized insulin was less than pH 6 within 10 min after addition of insulin. At 30 min, the average pH began to decrease to approximately pH 5, presumably because of fusion of endosomes with lysosomes
Stretching an heteropolymer
We study the influence of some quenched disorder in the sequence of monomers
on the entropic elasticity of long polymeric chains. Starting from the
Kratky-Porod model, we show numerically that some randomness in the favoured
angles between successive segments induces a change in the elongation versus
force characteristics, and this change can be well described by a simple
renormalisation of the elastic constant. The effective coupling constant is
computed by an analytic study of the low force regime.Comment: Latex, 7 pages, 3 postscript figur
The binary black-hole problem at the third post-Newtonian approximation in the orbital motion: Static part
Post-Newtonian expansions of the Brill-Lindquist and Misner-Lindquist
solutions of the time-symmetric two-black-hole initial value problem are
derived. The static Hamiltonians related to the expanded solutions, after
identifying the bare masses in both solutions, are found to differ from each
other at the third post-Newtonian approximation. By shifting the position
variables of the black holes the post-Newtonian expansions of the three metrics
can be made to coincide up to the fifth post-Newtonian order resulting in
identical static Hamiltonians up the third post-Newtonian approximation. The
calculations shed light on previously performed binary point-mass calculations
at the third post-Newtonian approximation.Comment: LaTeX, 9 pages, to be submitted to Physical Review
Stretching Semiflexible Polymer Chains: Evidence for the Importance of Excluded Volume Effects from Monte Carlo Simulation
Semiflexible macromolecules in dilute solution under very good solvent
conditions are modeled by self-avoiding walks on the simple cubic lattice
( dimensions) and square lattice ( dimensions), varying chain
stiffness by an energy penalty for chain bending. In the absence
of excluded volume interactions, the persistence length of the
polymers would then simply be with , the bond length being the lattice spacing,
and is the thermal energy. Using Monte Carlo simulations applying the
pruned-enriched Rosenbluth method (PERM), both and the chain length
are varied over a wide range ), and
also a stretching force is applied to one chain end (fixing the other end
at the origin). In the absence of this force, in a single crossover from
rod-like behavior (for contour lengths less than ) to swollen coils
occurs, invalidating the Kratky-Porod model, while in a double crossover
occurs, from rods to Gaussian coils (as implied by the Kratky-Porod model) and
then to coils that are swollen due to the excluded volume interaction. If the
stretching force is applied, excluded volume interactions matter for the force
versus extension relation irrespective of chain stiffness in , while
theories based on the Kratky-Porod model are found to work in for stiff
chains in an intermediate regime of chain extensions. While for in
this model a persistence length can be estimated from the initial decay of
bond-orientational correlations, it is argued that this is not possible for
more complex wormlike chains (e.g. bottle-brush polymers). Consequences for the
proper interpretation of experiments are briefly discussed.Comment: 23 pages, 17 figures, 2 tables, to be published in J. Chem. Phys.
(2011
- …
