273 research outputs found

    Donor-Advised Funds and the Shifting Charitable Landscape: Why Congress Must Respond

    Get PDF
    In recent years, donor-advised funds (DAFs), historically a relatively minor part of American philanthropy, have taken on an outsized importance. The dramatic growth of donor-advised funds has been driven not only by the inherent attractiveness of DAFs, but also by the profit margins of the financial services industry and the donors’ financial advisors. As more and more money rushes into DAFs – as of 2013, roughly 7% of all charitable gifts from individuals – the operating nonprofits that supposedly are the beneficiaries of donor-advised funds are losing out. At a time of higher demand for services and reduced funding, nonprofits are looking to individual donors for financial support, but increasingly donors are diverting their gifts into DAFs. This might be acceptable if DAFs were inspiring increased charitable giving, but there is little evidence to support that claim. And, because there is no mandated spend-down requirement, far more money is flowing into donor-advised funds than is flowing out into the charitable community. Wise public policy demands that Congress act to mandate an account-by-account spend-down of donor-advised funds within 15 to 20 years of the date of donation, and to prohibit private foundations from meeting their 5% distribution requirement through grants to DAFs

    The Impact of State Dependent Coverage Expansions on Young Adult Insurance Status: Further Analysis

    Get PDF
    Outlines how state initiatives to expand dependent coverage affected young adults' rates of uninsurance and of employer-sponsored coverage. Considers differential time effects and implications for national reform provisions to expand coverage to age 26

    Dependent Coverage Expansions: Estimating the Impact of Current State Policies

    Get PDF
    Presents preliminary findings on common provisions in state regulations of dependent health coverage and discusses the analytic approach to estimating the impact of state policy changes on young adults

    Targeted Deletion of a High-Affinity GATA-binding Site in the GATA-1 Promoter Leads to Selective Loss of the Eosinophil Lineage In Vivo

    Get PDF
    Transcription factor GATA-1 reprograms immature myeloid cells to three different hematopoietic lineages-erythroid cells, megakaryocytes, and eosinophils. GATA-1 is essential for maturation of erythroid and megakaryocytic precursors, as revealed by gene targeting in mice. Here we demonstrate that deletion of a high-affinity GATA-binding site in the GATA-1 promoter, an element presumed to mediate positive autoregulation of GATA-1 expression, leads to selective loss of the eosinophil lineage. These findings suggest that GATA-1 is required for specification of this lineage during hematopoietic development. Mice lacking the ability to produce eosinophils should prove useful in ascertaining the role of eosinophils in a variety of inflammatory or allergic disorders

    The Newtonian Limit for Asymptotically Flat Solutions of the Vlasov-Einstein System

    Full text link
    It is shown that there exist families of asymptotically flat solutions of the Einstein equations coupled to the Vlasov equation describing a collisionless gas which have a Newtonian limit. These are sufficiently general to confirm that for this matter model as many families of this type exist as would be expected on the basis of physical intuition. A central role in the proof is played by energy estimates in unweighted Sobolev spaces for a wave equation satisfied by the second fundamental form of a maximal foliation.Comment: 24 pages, plain TE

    Antagonism of FOG-1 and GATA factors in fate choice for the mast cell lineage

    Get PDF
    The zinc finger transcription factor GATA-1 requires direct physical interaction with the cofactor friend of GATA-1 (FOG-1) for its essential role in erythroid and megakaryocytic development. We show that in the mast cell lineage, GATA-1 functions completely independent of FOG proteins. Moreover, we demonstrate that FOG-1 antagonizes the fate choice of multipotential progenitor cells for the mast cell lineage, and that its down-regulation is a prerequisite for mast cell development. Remarkably, ectopic expression of FOG-1 in committed mast cell progenitors redirects them into the erythroid, megakaryocytic, and granulocytic lineages. These lineage switches correlate with transcriptional down-regulation of GATA-2, an essential mast cell GATA factor, via switching of GATA-1 for GATA-2 at a key enhancer element upstream of the GATA-2 gene. These findings illustrate combinatorial control of cell fate identity by a transcription factor and its cofactor, and highlight the role of transcriptional networks in lineage determination. They also provide evidence for lineage instability during early stages of hematopoietic lineage commitment

    Clinical Efficacy and Predictive Molecular Markers of Neoadjuvant Gemcitabine and Pemetrexed in Resectable Non-small Cell Lung Cancer

    Get PDF
    BackgroundA trial of neoadjuvant gemcitabine and pemetrexed (GP) chemotherapy in patients with resectable non-small cell lung cancer was conducted. The goal was to achieve a disease response rate of 50% and to determine if the expression levels of genes associated with GP metabolism are predictive of response.MethodsPatients had staging with a computed tomography scan, whole body F-18 fluorodeoxyglucose positron emission tomography, and mediastinoscopy. Four biweekly cycles of GP were given. Patients were restaged, and those with resectable stage IB-III disease had thoracotomy. Fresh frozen tumor specimens were collected before and after chemotherapy and the mRNA levels of 14 target genes determined by real-time reverse transcription polymerase chain reaction.ResultsFifty-two patients started therapy. The radiographic disease response rate was 35% (95% confidence interval 21.7-49.6%), and the progression rate was 6%. Forty-six patients had a thoracotomy. The complete tumor resection rate was 77% (40/52). There were no perioperative deaths or deaths related to chemotherapy. Tumor response to chemotherapy was inversely correlated with the level of expression of RRM1 (p < 0.001; regulatory subunit of ribonucleotide reductase) and TS (p = 0.006; thymidylate synthase); i.e., the reduction in tumor size was greater in those with low levels of expression.ConclusionsNeoadjuvant GP is well tolerated and produces an objective response rate of 35%. Tumoral RRM1 and TS mRNA levels are predictive of disease response and should be considered as parameters for treatment selection in future trials with this regimen

    Bmi1 Promotes Erythroid Development Through Regulating Ribosome Biogenesis

    Get PDF
    While Polycomb group protein Bmi1 is important for stem cell maintenance, its role in lineage commitment is largely unknown. We have identified Bmi1 as a novel regulator of erythroid development. Bmi1 is highly expressed in mouse erythroid progenitor cells and its deficiency impairs erythroid differentiation. BMI1 is also important for human erythroid development. Furthermore, we discovered that loss of Bmi1 in erythroid progenitor cells results in decreased transcription of multiple ribosomal protein genes and impaired ribosome biogenesis. Bmi1 deficiency stabilizes p53 protein, leading to upregulation of p21 expression and subsequent G0/G1 cell cycle arrest. Genetic inhibition of p53 activity rescues the erythroid defects seen in the Bmi1 null mice, demonstrating that a p53-dependent mechanism underlies the pathophysiology of the anemia. Mechanistically, Bmi1 is associated with multiple ribosomal protein genes and may positively regulate their expression in erythroid progenitor cells. Thus, Bmi1 promotes erythroid development, at least in part through regulating ribosome biogenesis. Ribosomopathies are human disorders of ribosome dysfunction, including Diamond-Blackfan anemia (DBA) and 5q− syndrome, in which genetic abnormalities cause impaired ribosome biogenesis, resulting in specific clinical phenotypes. We observed that BMI1 expression in human hematopoietic stem and progenitor cells from patients with DBA is correlated with the expression of some ribosomal protein genes, suggesting that BMI1 deficiency may play a pathological role in DBA and other ribosomopathies
    • …
    corecore