769 research outputs found

    Methylation in the preinitiation domain suppresses gene transcription by an indirect mechanism.

    Full text link

    Electric field control of magnetic properties and electron transport in BaTiO3-based multiferroic heterostructures

    Get PDF
    In this paper, we report on a purely electric mechanism for achieving the electric control of the interfacial spin polarization and magnetoresistance in multiferroic tunneling junctions. We investigate micrometric devices based on the Co/Fe/BaTiO3/La0.7Sr0.3MnO3 heterostructure, where Co/Fe and La0.7Sr0.3MnO3 are the magnetic electrodes and BaTiO3 acts both as a ferroelectric element and tunneling barrier. We show that, at 20 K, devices with a 2 nm thick BaTiO3 barrier present both tunneling electroresistance (TER = 12   ±   0.1%) and tunneling magnetoresistance (TMR). The latter depends on the direction of the BaTiO3 polarization, displaying a sizable change of the TMR from  -0.32   ±   0.05% for the polarization pointing towards Fe, to  -0.12   ±   0.05% for the opposite direction. This is consistent with the on-off switching of the Fe magnetization at the Fe/BaTiO3 interface, driven by the BaTiO3 polarization, we have previously demonstrated in x-ray magnetic circular dichroism experiments

    Entropy of three-dimensional asymptotically flat cosmological solutions

    Full text link
    The thermodynamics of three-dimensional asymptotically flat cosmological solutions that play the same role than the BTZ black holes in the anti-de Sitter case is derived and explained from holographic properties of flat space. It is shown to coincide with the flat-space limit of the thermodynamics of the inner black hole horizon on the one hand and the semi-classical approximation to the gravitational partition function associated to the entropy of the outer horizon on the other. This leads to the insight that it is the Massieu function that is universal in the sense that it can be computed at either horizon.Comment: 16 pages Latex file, v2: references added, cosmetic changes, v3: 1 reference adde

    A Quantitative Chemicals' Mixture Risk Assessment Approach For Contaminants Of Emerging Concern Management In Drinking Water

    Get PDF
    Uncertainties on occurrence and hazard of mixtures of Contaminants of Emerging Concern (CECs) in drinking water (DW) challenge water utilities and decision makers in prioritizing these compounds in, respectively, interventions for the optimization of DW treatment and DW regulations. Continuous development of quantitative risk assessment procedures addressing adverse effects of CECs supports decision-making regarding mitigation actions in minimizing health risks. We propose a novel, quantitative chemical risk assessment (QCRA) approach for mixtures of CECs in DW. The risks are evaluated with the aid of the benchmark quotient probabilistic distribution and including uncertainties in both (i) exposure assessment using occurrence data of different DW sources and simulating DW treatment by granular activated carbon and (ii) hazard assessment steps. The QCRA was applied to compare risks deriving from the presence of alkylphenols mixtures in tap or bottled DW, and to evaluate how actual DW consumption habits affect health risks

    Endocanalicular transendothelial crossing (ETC): A novel intravasation mode used by HEK-EBNA293-VEGF-D cells during the metastatic process in a xenograft model

    Get PDF
    In cancer metastasis, intravasation of the invasive tumor cell (TCi) represents one of the most relevant events. During the last years, models regarding cancer cell intravasation have been proposed, such as the "endocanalicular transendothelial crossing" (ETC) theory. This theory describes the interplay between two adjacent endothelial cells and the TCi or a leukocyte during intravasation. Two endothelial cells create a channel with their cell membranes, in which the cell fits in without involving endothelial cell intercellular junctions, reaching the lumen through a transendothelial passage. In the present study, ten SCID mice were subcutaneously xenotransplanted with the HEK-EBNA293-VEGF-D cell line and euthanized after 35 days. Post-mortem examinations were performed and proper specimens from tumors were collected. Routine histology and immunohistochemistry for Ki-67, pAKT, pERK, ZEB-1, TWIST-1, F-actin, E-cadherin and LYVE-1 were performed followed by ultrastructural serial sections analysis. A novel experimental approach involving Computed Tomography (CT) combined with 3D digital model reconstruction was employed. The analysis of activated transcription factors supports that tumor cells at the periphery potentially underwent an epithelial-to-mesenchymal transition (EMT)-like process. Topographical analysis of LYVE-1 immunolabeled lymphatics revealed a peritumoral localisation. TEM investigations of the lymphatic vessels combined with 3D digital modelling enhanced the understanding of the endotheliocytes behavior during TCi intravasation, clarifying the ETC theory. Serial ultrastructural analysis performed within tumor periphery revealed numerous cells during the ETC process. Furthermore, this study demonstrates that ETC is an intravasation mode more frequently used by the TCi than by leukocytes during intravasation in the HEK-EBNA293-VEGF-D xenograft model and lays down the potential basis for promising future studies regarding intravasation blocking therapy

    Geometric techniques for implicit two-dimensional systems

    Get PDF
    Geometric tools are developed for two-dimensional (2-D) models in an implicitFornasini–Marchesini form. In particular, the structural properties of controlled and conditionedinvariance are defined and studied. These properties are investigated in terms ofquarter-plane causal solutions of the implicit model given compatible boundary conditions.The definitions of controlled and conditioned invariance introduced, along with the correspondingoutput-nulling and input-containing subspaces, are shown to be richer than theone-dimensional counterparts. The analysis carried out in this paper establishes necessaryand sufficient conditions for the solvability of 2-D disturbance decoupling problems andunknown-input observation problems. The conditions obtained are expressed in terms ofoutput-nulling and input-containing subspaces, which can be computed recursively in a finitenumber of steps

    Mesenchymal stem cells in renal function recovery after acute kidney injury. Use of a differentiating agent in a rat model.

    Get PDF
    Acute kidney injury (AKI) is a major health care condition with limited current treatment options. Within this context, stem cells may provide a clinical approach for AKI. Moreover, a synthetic compound previously developed, hyaluronan monoesters with butyric acid (HB), able to induce metanephric differentiation, formation of capillary-like structures, and secretion of angiogenic cytokines, was tested in vitro. Thereafter, we investigated the effects of human mesenchymal stem cells from fetal membranes (FMhMSCs), both treated and untreated with HB, after induction of ischemic AKI in a rat model. At reperfusion following 45-min clamping of renal pedicles, each rat was randomly assigned to one of four groups: CTR, PBS, MSC, and MSC-HB. Renal function at 1, 3, 5, and 7 days was assessed. Histological samples were analyzed by light and electron microscopy and renal injury was graded. Cytokine analysis on serum samples was performed. FMhMSCs induced an accelerated renal functional recovery, demonstrated by biochemical parameters and confirmed by histology showing that histopathological alterations associated with ischemic injury were less severe in cell-treated kidneys. HB-treated rats showed a minor degree of inflammation, both at cytokine and TEM analyses. Better functional and morphological recovery were not associated to stem cells' regenerative processes, but possibly suggest paracrine effects on microenvironment that induce retrieval of renal damaged tissues. These results suggest that FMhMSCs could be useful in the treatment of AKI and the utilization of synthetic compounds could enhance the recovery induction ability of cells
    corecore