1,244 research outputs found

    Geometrical Description of Quantum Mechanics - Transformations and Dynamics

    Full text link
    In this paper we review a proposed geometrical formulation of quantum mechanics. We argue that this geometrization makes available mathematical methods from classical mechanics to the quantum frame work. We apply this formulation to the study of separability and entanglement for states of composite quantum systems.Comment: 22 pages, to be published in Physica Script

    Piezoelectric materials parameters for piezoelectric thin films in GHz applications

    Get PDF
    Piezoelectric thin films have existing and promising new applications in microwave filter technologies. The final performance depends on many parameters, and very specifically on the materials properties of each involved material. In this article, materials and properties for thin-film bulk acoustic wave resonators are discussed on some selected issues: the piezoelectric coefficients and acoustic losses of AlN, the relation of the first one with microstructural parameters, the inclusion of parasitic elements, and the merits of and problems with ferroelectric material

    PFAS in textile wastewater: an integrated approach to reduce the environmental risk for their mixture

    Get PDF
    Per- and polyfluoroalkyl substances (PFAS), used in several industrial applications, are gaining increasing concern due to their spread in the environment, their stability and eco-toxicity. To avoid PFAS spread in the environment, reducing the environmental risk on receiving water bodies, removal strategies need to be implemented at both industrial and municipal wastewater treatment plants (WWTP). This study presents a case study in a textile district in northern Italy where PFAS monitoring campaigns were combined with testing at lab and pilot-scale of two promising removal processes (membrane separation, adsorption on activated carbon) and data used for environmental risk assessment. This combination was proved to be useful to support the identification of the optimal combination of prevention and treatment interventions to be applied at different system points to reduce the environmental risk

    Physical properties of Ce3-xTe4 below room temperature

    Full text link
    The physical properties of polycrystalline Ce3-xTe4 were investigated by measurements of the thermoelectric properties, Hall coefficient, heat capacity, and magnetization. The fully-filled, metallic x=0 compound displays a soft ferromagnetic transition near 4K, and analysis of the corresponding heat capacity anomaly suggests a doublet ground state for Ce^{3+}. The transition is suppressed to below 2K in the insulating x=0.33 composition, revealing that magnetic order in Ce3-xTe4 is driven by an RKKY-type interaction. The thermoelectric properties trend with composition as expected from simple electron counting, and the transport properties in Ce3Te4 are observed to be similar to those in La3Te4. Trends in the low temperature thermal conductivity data reveal that the phonons are efficiently scattered by electrons, while all compositions examined have a lattice thermal conductivity near 1.2W/m/K at 200K.Comment: Submitted to Phys. Rev.

    Spin reorientation in TlFe1.6Se2 with complete vacancy ordering

    Full text link
    The relationship between vacancy ordering and magnetism in TlFe1.6Se2 has been investigated via single crystal neutron diffraction, nuclear forward scattering, and transmission electron microscopy. The examination of chemically and structurally homogenous crystals allows the true ground state to be revealed, which is characterized by Fe moments lying in the ab-plane below 100K. This is in sharp contrast to crystals containing regions of order and disorder, where a competition between c-axis and ab-plane orientations of the moments is observed. The properties of partially-disordered TlFe1.6Se2 are therefore not associated with solely the ordered or disordered regions. This contrasts the viewpoint that phase separation results in independent physical properties in intercalated iron selenides, suggesting a coupling between ordered and disordered regions may play an important role in the superconducting analogues.Comment: Minor changes; updated references and funding acknowledgemen

    On the dynamical conditions concomitant with the bottom anoxia in the Northern Adriatic Sea: A numerical case study for the 1977 event

    Get PDF
    The aim of the present investigation is to explain the dramatic phenomenon of anoxia/hypoxia waters observed in the Northern Adriatic Sea during August 1977 by using the data collected in the DINAS 2 oceanographic campaign and modelling them by means of a three-dimensional numerical model for the Whole basin. The model has been forced with ECMWF surface reanalysis data—wind stress, heat fluxes and river discharges. The main result lies in the high temporal and spatial correlation between the observed anoxia areas and the centres of anticyclonic circulation produced by the model. Further investigations seem to be necessary for a better matching between observed and simulated thermohaline fields

    Entanglement Induced Phase Transitions

    Get PDF
    Starting from the canonical ensemble over the space of pure quantum states, we obtain an integral representation for the partition function. This is used to calculate the magnetisation of a system of N spin-1/2 particles. The results suggest the existence of a new type of first order phase transition that occurs at zero temperature in the absence of spin-spin interactions. The transition arises as a consequence of quantum entanglement. The effects of internal interactions are analysed and the behaviour of the magnetic susceptibility for a small number of interacting spins is determined.Comment: 4 pages, 2 figure
    corecore