8 research outputs found

    Avaliação de propriedades estruturais de membranas lipídicas após substituição do colesterol por análogos fluorescentes

    Get PDF
    A espectroscopia e a microscopia de fluorescência têm sido usadas em biofísica de membranas há décadas. Como a unidade estrutural básica das membranas biológicas é a bicamada de lípidos e estes não fluorescem, o uso de sondas extrínsecas de membrana é uma necessidade. Contudo, duas questões preocupantes se levantam quanto ao uso de sondas extrínsecas de fluorescência em estudos de membranas. Em primeiro lugar, o comportamento das moléculas de sonda na bicamada (que região da bicamada elas reportam, as suas dinâmicas translacional e rotacional) é frequentemente mal conhecido. Em segundo lugar, na interpretação de resultados de experiências de fluorescência, pode ser difícil distinguir entre propriedades legítimas da membrana e efeitos de perturbação resultantes da incorporação da sonda. Para este efeito, as simulações por dinâmica molecular (MD), ao providenciarem informação detalhada à escala atómica, representam um meio valioso para caracterizar a localização e dinâmica de sondas na bicamada, assim como a magnitude de perturbação que elas induzem na estrutura lipídica [1]. Neste contexto, optimizaram-se, com recurso ao programa Firefly, as estruturas do colesterol e de dois análogos fluorescentes (desidroergoesterol e colestatrienol) ao nível de teoria DFT/R-B3LYP/6-31G(d) e submeteram-se em seguida ao servidor de topologias ATB, inscrevendo simultaneamente as cargas parciais calculadas na topologia molecular. Estas topologias foram utilizadas na construção de modelos de membranas lipídicas constituídas por POPC, colesterol e uma das sondas fluorescentes acima identificadas. Os modelos assim obtidos foram hidratados e sujeitos a simulações de MD, donde se calculou a área por lípido, a espessura e densidade da bicamada, os coeficientes de difusão lateral para as espécies presentes e os parâmetros de ordem das cadeias acilo. As simulações foram efectuadas em ensemble NPT através do pacote de software GROMACS. Análises preliminares permitiram a comparação dos comportamentos na bicamada dos esteróis fluorescentes com o do colesterol, informação vital para validar o uso dos primeiros como análogos fluorescentes do segundo. REFERÊNCIAS [1] Loura, L.M.S.; Prates Ramalho, J.P. Biophys. Rev. 1 (2009), 141

    Behavior of pyrene as a polarity probe in palmitoylsphingomyelin and palmitoylsphingomyelin/cholesterol bilayers: A molecular dynamics simulation study

    No full text
    Pyrene is a polycyclic aromatic hydrocarbon noted for its remarkable optical spectroscopic properties. Among its uses as a fluorescent probe, measurement of lipid bilayer's equivalent polarity through the pyrene Ham effect stands out. To this effect, the ratio of the intensities of the first and third vibronic bands (I-1/I-3) in its emission spectrum of pyrene is measured. However, issues concerning the precise location of bilayer-inserted pyrene and the possibility of probe-induced perturbation of host bilayer properties are potential sources of concern in this regard. Atomistic molecular dynamics simulations constitute a useful method for the characterization of lipid membrane systems, and, in particular, to understand the behavior of fluorescence probes upon incorporation in lipid bilayers. In this report, we present a detailed characterization of the behavior of pyrene in fluid N-palmitoylsphingomyelin (PSM) and PSM/cholesterol membranes, with emphasis on the degree of proximity between the probe and water molecules inside bilayers, related to the use of pyrene to measure equivalent lipid bilayer polarity. It is concluded that pyrene exerts minor effects on bilayer properties, with slight local disordering being apparent for high cholesterol content. Whereas rotation and lateral diffusion of pyrene are greatly slowed in cholesterol rich systems, its relative transverse location is not significantly affected. While hydration of PSM bilayers, as sensed by pyrene, is already low compared to that of fluid phosphatidylcholine, it becomes even smaller for high cholesterol mole fraction at the studied temperature. (C) 2014 Elsevier B.V. All rights reserved.FEDER, through COMPETE program; FCT (Fundacao para a Ciencia e a Tecnologia, Portugal) [FCOMP-01-0124-FEDER-010787 (FCT PTDC/QUI-QUI/098198/2008)]; FCT [PEst-OE/QUI/UI0313/2014]; national Portuguese through FCT - Fundacao para a Ciencia e a Tecnologia [PEst-OE/EQB/LA0023/2013, PTDC/QUI-BIQ/112943/2009

    T-20 and T-1249 HIV fusion inhibitors' structure and conformation in solution: a molecular dynamics study

    No full text
    Fusion of the HIV envelope with the target cell membrane is a critical step of the HIV entry into the target cell. Several peptides based on the C-region of HIV gp41 have been used in clinical trials as possible HIV fusion inhibitors. Among these are T-1249 and T-20 (also known as enfurvitide). Despite recent works, a detailed molecular picture of the inhibitory mechanism of these molecules is still lacking. These peptides are usually depicted as α-helices by analogy with the structure of the sequence of the gp41 protein with which they are homologous. However, structures like these would be highly unstable in solution and thus would not explain, by themselves, the ability that the two fusion inhibitors have to become solvated by water and also interact effectively with cell membranes. To this effect, extensive molecular dynamics simulations were carried out to investigate the structure and conformational behavior of T-1249 and T-20 in water, as well as shorter homologous peptides CTP and 3f5, which show no inhibitory action. We found that the studied inhibitors have no stable structure in solution in the time scale studied. Additionally, the solvent accessible area varies significantly during the simulation. Our findings suggest that these peptides may assume not only one, but several possible sets of structures in solution, some of which more adequate to interact with the solvent, whereas others might be better suited to interact with cell membranes. Interestingly, and in accordance with published experimental studies, we verified that T-1249 displays considerably larger α-helical structure than T-20. Taking into account a recent study with design peptides with increased helicity, it is possible that this feature may be related to the increased inhibiting efficiency of T-1249 relative to that of T-20

    T-20 and T-1249 HIV fusion inhibitors' structure and conformation in solution: a molecular dynamics study

    No full text
    Fusion of the HIV envelope with the target cell membrane is a critical step of the HIV entry into the target cell. Several peptides based on the C-region of HIV gp41 have been used in clinical trials as possible HIV fusion inhibitors. Among these are T-1249 and T-20 (also known as enfurvitide). Despite recent works, a detailed molecular picture of the inhibitory mechanism of these molecules is still lacking. These peptides are usually depicted as α-helices by analogy with the structure of the sequence of the gp41 protein with which they are homologous. However, structures like these would be highly unstable in solution and thus would not explain, by themselves, the ability that the two fusion inhibitors have to become solvated by water and also interact effectively with cell membranes. To this effect, extensive molecular dynamics simulations were carried out to investigate the structure and conformational behavior of T-1249 and T-20 in water, as well as shorter homologous peptides CTP and 3f5, which show no inhibitory action. We found that the studied inhibitors have no stable structure in solution in the time scale studied. Additionally, the solvent accessible area varies significantly during the simulation. Our findings suggest that these peptides may assume not only one, but several possible sets of structures in solution, some of which more adequate to interact with the solvent, whereas others might be better suited to interact with cell membranes. Interestingly, and in accordance with published experimental studies, we verified that T-1249 displays considerably larger α-helical structure than T-20. Taking into account a recent study with design peptides with increased helicity, it is possible that this feature may be related to the increased inhibiting efficiency of T-1249 relative to that of T-20

    Behavior of Fluorescent Cholesterol Analogues Dehydroergosterol and Cholestatrienol in Lipid Bilayers: A Molecular Dynamics Study

    No full text
    Molecular dynamics simulations of bilayer systems consisting of varying proportions of 1-palmitoyl-2-oleoyl-snglycero-3-phosphocholine (POPC), cholesterol (Chol), and intrinsically fluorescent Chol analogues dehydroergosterol (DHE)or cholestatrienol (CTL) were carried out to study in detail the extent to which these fluorescent probes mimic Chol’s behavior(location, orientation, dynamics) in membranes as well as their effect on host bilayer structure and dynamics (namely their ability to induce membrane ordering in comparison with Chol). Control properties of POPC and POPC/Chol bilayers agree well with published experimental and simulation work. Both probes and Chol share similar structural and dynamical properties within the bilayers. Additionally, the fluorescent sterols induce membrane ordering to a similar (slightly lower) extent to that of Chol. These findings combined demonstrate that the two studied fluorescent sterols are adequate analogues of Chol, and may be used with advantage over side-chain labeled sterols. The small structural differences between the three studied sterols are responsible for the slight variations in the calculated properties, with CTL presenting a more similar behavior to Chol (correlating with its larger structural similarity to Chol) compared to DHE

    Diphenylhexatriene membrane probes DPH and TMA-DPH: A comparative molecular dynamics simulation study

    No full text
    Fluorescence spectroscopy andmicroscopy have been utilized as tools in membrane biophysics for decades now. Because phospholipids are non-fluorescent, the use of extrinsic membrane probes in this context is commonplace. Among the latter, 1,6-diphenylhexatriene (DPH) and its trimethylammonium derivative (TMA-DPH) have been extensively used. It is widely believed that, owing to its additional charged group, TMA-DPH is anchored at the lipid/water interface and reports on a bilayer region that is distinct from that of the hydrophobic DPH. In this study, we employ atomistic MD simulations to characterize the behavior of DPH and TMA-DPH in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and POPC/cholesterol (4:1) bilayers. We show that although the dynamics of TMA-DPH in thesemembranes is noticeably more hindered than that of DPH, the location of the average fluorophore of TMA-DPH is only ~3–4 Å more shallow than that of DPH. The hindrance observed in the translational and rotational motions of TMA-DPH compared to DPH is mainly not due to significant differences in depth, but to the favorable electrostatic interactions of the former with electronegative lipid atoms instead. By revealing detailed insights on the behavior of these two probes, our results are useful both in the interpretation of past work and in the planning of future experiments using themasmembrane reporters

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    No full text
    © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    No full text
    © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide. Methods: A multimethods analysis was performed as part of the GlobalSurg 3 study—a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital. Findings: Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3·85 [95% CI 2·58–5·75]; p<0·0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63·0% vs 82·7%; OR 0·35 [0·23–0·53]; p<0·0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer. Interpretation: Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised. Funding: National Institute for Health and Care Research
    corecore