3,671 research outputs found

    Semiclassical treatment of fusion processes in collisions of weakly bound nuclei

    Full text link
    We describe a semiclassical treatment of nuclear fusion reactions involving weakly bound nuclei. In this treatment, the complete fusion probabilities are approximated by products of two factors: a tunneling probability and the probability that the system is in its ground state at the strong absorption radius. We investigate the validity of the method in a schematic two-channel application, where the channels in the continuum are represented by a single resonant state. Comparisons with full coupled-channels calculations are performed. The agreement between semiclassical and quantal calculations isquite good, suggesting that the procedure may be extended to more sophisticated discretizations of the continuum.Comment: 11 pages, 5 figure

    Effective Widths and Effective Number of Phonons of Multiphonon Giant Resonances

    Get PDF
    We discuss the origin of the difference between the harmonic value of the width of the multiphonon giant resonances and the smaller observed value. Analytical expressions are derived for both the effective width and the average cross-section. The contribution of the Brink-Axel mechanism in resolving the discrepancy is pointed out.Comment: 9 pages, 4 figure

    Isospin structure of one- and two-phonon GDR excitations

    Get PDF
    Isospin is included in the description of Coulomb excitation of multiple giant isovector dipole resonances. In the excitation of even-even nuclei, a relevant portion of the excitation strength is shown to be associated with 1+ two-phonon states, which tends to be hindered or completely supressed in calculations in which the isospin degree of freedom is not considered. We find that the excitation cross sections is strongly dependent on the ground state isospin.Comment: 8 pages, 2 figure

    The variability behavior of CoRoT M-giant Stars

    Full text link
    For 6 years the Convection, Rotation, and Planetary Transits (CoRoT) space mission has acquired photometric data from more than one hundred thousand point sources towards and directly opposite from the inner and outer regions of the Galaxy. The high temporal resolution of the CoRoT data combined with the wide time span of the observations has enabled the study of short and long time variations in unprecedented detail. From the initial sample of 2534 stars classified as M-giants in the CoRoT databasis, we selected 1428 targets that exhibit well defined variability, using visual inspection. The variability period and amplitude of C1 stars (stars having Teff < 4200 K) were computed using Lomb-Scargle and harmonic fit methods. The trends found in the V-I vs J-K color-color diagram are in agreement with standard empirical calibrations for M-giants. The sources located towards the inner regions of the Galaxy are distributed throughout the diagram while the majority of the stars towards the outer regions of the Galaxy are spread between the calibrations of M-giants and the predicted position for Carbon stars. The stars classified as supergiants follow a different sequence from the one found for giant stars. We also performed a KS test of the period and amplitude of stars towards the inner and outer regions of the Galaxy. We obtained a low probability that the two samples come from the same parent distribution. The observed behavior of the period-amplitude and period-Teff diagrams are, in general, in agreement with those found for Kepler sources and ground based photometry, with pulsation being the dominant cause responsible for the observed modulation. We also conclude that short-time variations on M-Giant stars do not exist orare very rare and the few cases we found are possibly related to biases or background stars.Comment: 11 pages, 6 figure

    Interplay of static and dynamic effects in 6He+ 238U Fusion

    Full text link
    We investigate the influence of the neutron halo and the breakup channel in 6He + 238U fusion at near-barrier energies. To include static effects of the 2n-halo in 6He nuclei, we use a single-folding potential obtained from an appropriate nucleon-238U interaction and a realistic 6He density. Dynamical effects arising from the breakup process are then included through coupled-channel calculations. These calculations suggest that static effects dominate the cross section at energies above the Coulomb barrier, while the sub-barrier fusion cross section appears to be determined by coupling to the breakup channel. This last conclusion is uncertain due to the procedure employed to measure the fusion cross-section.Comment: 13 pages, 4 figure
    corecore