876 research outputs found

    Phase locking a clock oscillator to a coherent atomic ensemble

    Get PDF
    The sensitivity of an atomic interferometer increases when the phase evolution of its quantum superposition state is measured over a longer interrogation interval. In practice, a limit is set by the measurement process, which returns not the phase, but its projection in terms of population difference on two energetic levels. The phase interval over which the relation can be inverted is thus limited to the interval [−π/2,π/2][-\pi/2,\pi/2]; going beyond it introduces an ambiguity in the read out, hence a sensitivity loss. Here, we extend the unambiguous interval to probe the phase evolution of an atomic ensemble using coherence preserving measurements and phase corrections, and demonstrate the phase lock of the clock oscillator to an atomic superposition state. We propose a protocol based on the phase lock to improve atomic clocks under local oscillator noise, and foresee the application to other atomic interferometers such as inertial sensors.Comment: 9 pages, 7 figure

    Determinants of non-vaccination and incomplete vaccination in Canadian toddlers

    Get PDF
    Vaccination coverage remains suboptimal in Canada and sporadic outbreaks of vaccine-preventable diseases such as measles and pertussis continue to occur. This study was undertaken to identify sociodemographic determinants of total non-vaccination (having never received any vaccine), non-vaccination for measles (0 doses) and incomplete vaccination for pertussis (< 4 doses) among 2-year-old Canadian children. Data from the 2013 Childhood National Immunization Coverage Survey (CNICS) were used. Associations between sociodemographic factors and outcomes were measured by multiple logistic regressions and adjusted odds ratios (aOR) were calculated. A total of 5,477 children were included in the analyses of total non-vaccination, and 3,899 children were included in the analysis of non-vaccination for measles and incomplete vaccination for pertussis. Overall, 2.7% of children (95% CI 2.0-3.3) had received no vaccine at all. Lower parental education, i.e., the responding parent having a high school diploma, trade certificate or less (compared with university graduation) was associated with total non-vaccination (aOR 1.99, 95% CI 1.02-3.91). Non-vaccination for measles was more frequent among children of single parent families (aOR 1.63, 95% CI 1.01-2.61) and those of parents with lower education (aOR 1.86, 95% CI 1.26-2.76). The odds of incomplete vaccination for pertussis was greater among children born outside Canada (aOR 3.10, 95% CI 1.73-5.58), of parents with lower education (aOR 1.92, 95% CI 1.41-2.62), and those whose household income was between 40,000and40,000 and 59,999 (aOR 1.47; 95% CI 1.04-2.07) or lower than $40,000 (aOR 1.58, 95% CI 1.13-2.22). Significant regional variation was also found for all outcomes. In conclusion, despite universal access to free childhood vaccines in Canada, regional variation and socioeconomic inequalities in vaccine uptake were still observed. Further analyses are warranted to identify barriers contributing to these variations

    Variation in growth rates of branching corals along Australia's Great Barrier Reef

    Get PDF
    Coral growth is an important component of reef health and resilience. However, few studies have investigated temporal and/or spatial variation in growth of branching corals, which are important contributors to the structure and function of reef habitats. This study assessed growth (linear extension, density, and calcification) of three branching coral species (Acropora muricata, Pocillopora damicornis and Isopora palifera) at three distinct locations (Lizard Island, Davies/Trunk Reef, and Heron Island) along Australia’s Great Barrier Reef (GBR). Annual growth rates of all species were highest at Lizard Island and declined with increasing latitude, corresponding with differences in temperature. Within locations, however, seasonal variation in growth did not directly correlate with temperature. Between October 2012 and October 2014, the highest growth of A. muricata was in the 2013–14 summer at Lizard Island, which was unusually cool and ~0.5 °C less than the long-term summer average temperature. At locations where temperatures reached or exceeded the long-term summer maxima, coral growth during summer periods was equal to, if not lower than, winter periods. This study shows that temperature has a significant influence on spatiotemporal patterns of branching coral growth, and high summer temperatures in the northern GBR may already be constraining coral growth and reef resilience

    Observations of simultaneous sperm release and larval planulation suggest reproductive assurance in the coral Pocillopora acuta

    Get PDF
    Despite being an extensively studied group of corals, the reproductive biology of the scleractinian genus Pocillopora remains a mystery. Pocillopora acuta has been proposed to exhibit a mixed reproductive mode, sexually producing gametes (sperm and eggs) and asexually brooding larvae simultaneously within a single colony. Here, we report observations of night-time spawning of sperm during the peak monthly larval release period. We offer a new hypothesis for the regulation of sexual and asexual reproduction in the species and posit that sexual reproduction may occur more often than previously suggested. However, the success of internal oocyte fertilization and subsequent zygote development is dependent on sperm making contact with a fertile colony. We hypothesize that asexual development of larvae occurs when sperm is absent, but more extensive genetic, genomic, and histological data are required to determine the pathway by which unfertilized oocytes may develop. We also propose that this mixed mode of reproduction is an adaptation to mating failure, common in sessile marine invertebrates. The reproductive assurance enjoyed by the species may therefore be the key to its ecological and evolutionary persistence

    The effect of natural and anthropogenic nutrient and sediment loads on coral oxidative stress on runoff-exposed reefs

    Get PDF
    Recently, corals on the Great Barrier (GBR) have suffered mass bleaching. The link between ocean warming and coral bleaching is understood to be due to temperature-dependence of complex physiological processes in the coral host and algal symbiont. Here we use a coupled catchment-hydrodynamic-biogeochemical model, with detailed zooxanthellae photophysiology including photoadaptation, photoacclimation and reactive oxygen build-up, to investigate whether natural and anthropogenic catchment loads impact on coral bleaching on the GBR. For the wet season of 2017, simulations show the cross-shelf water quality gradient, driven by both natural and anthropogenic loads, generated a contrasting zooxanthellae physiological state on inshore versus mid-shelf reefs. The relatively small catchment flows and loads delivered during 2017, however, generated small river plumes with limited impact on water quality. Simulations show the removal of the anthropogenic fraction of the catchment loads delivered in 2017 would have had a negligible impact on bleaching rates

    Temporal variation in the microbiome of Acropora coral species does not reflect seasonality

    Get PDF
    The coral microbiome is known to fluctuate in response to environmental variation and has been suggested to vary seasonally. However, most studies to date, particularly studies on bacterial communities, have examined temporal variation over a time frame of less than 1 year, which is insufficient to establish if microbiome variations are indeed seasonal in nature. The present study focused on expanding our understanding of long-term variability in microbial community composition using two common coral species, Acropora hyacinthus, and Acropora spathulata, at two mid-shelf reefs on the Great Barrier Reef. By sampling over a 2-year time period, this study aimed to determine whether temporal variations reflect seasonal cycles. Community composition of both bacteria and Symbiodiniaceae was characterized through 16S rRNA gene and ITS2 rDNA metabarcoding. We observed significant variations in community composition of both bacteria and Symbiodiniaceae among time points for A. hyacinthus and A. spathulata. However, there was no evidence to suggest that temporal variations were cyclical in nature and represented seasonal variation. Clear evidence for differences in the microbial communities found between reefs suggests that reef location and coral species play a larger role than season in driving microbial community composition in corals. In order to identify the basis of temporal patterns in coral microbial community composition, future studies should employ longer time series of sampling at sufficient temporal resolution to identify the environmental correlates of microbiome variation

    Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef:Implications for symbiont shuffling

    Get PDF
    Reef corals form associations with an array of genetically and physiologically distinct endosymbionts from the genus Symbiodinium. Some corals harbor different clades of symbionts simultaneously, and over time the relative abundances of these clades may change through a process called symbiont shuffling. It is hypothesized that this process provides a mechanism for corals to respond to environmental threats such as global warming. However, only a minority of coral species have been found to harbor more than one symbiont clade simultaneously and the current view is that the potential for symbiont shuffling is limited. Using a newly developed real-time PCR assay, this paper demonstrates that previous studies have underestimated the presence of background symbionts because of the low sensitivity of the techniques used. The assay used here targets the multi-copy rDNA ITS1 region and is able to detect Symbiodinium clades C and D with > 100-fold higher sensitivity compared to conventional techniques. Technical considerations relating to intragenomic variation, estimating copy number and non-symbiotic contamination are discussed. Eighty-two colonies from four common scleractinian species (Acropora millepora, Acropora tenuis, Stylophora pistillata and Turbinaria reniformis) and 11 locations on the Great Barrier Reef were tested for background Symbiodinium clades. Although these colonies had been previously identified as harboring only a single clade based on SSCP analyses, background clades were detected in 78% of the samples, indicating that the potential for symbiont shuffling may be much larger than currently thought

    Branching coral growth and visual health during bleaching and recovery on the central Great Barrier Reef

    Get PDF
    Coral reefs are under threat from cumulative impacts such as cyclones, crown-of-thorns starfish (COTS) outbreaks and climate-driven coral bleaching events. Branching corals are more severely impacted by these events than other coral morphologies due to their sensitivity to heat stress and weaker skeletons and COTS preferred prey. The central Great Barrier Reef experienced unprecedented back-to-back bleaching events in 2016 and 2017. This study commenced in 2017 at the peak of heat stress and examined the impact of the heatwave on the survival and recovery of corals by assessing the growth, health (based on the visual health index) and physiological parameters (chlorophyll a, zooxanthellae density, lipid and protein content) of two species, Acropora millepora and Pocillopora acuta (N = 60 colonies for each species). It was conducted across a gradient of turbidity at three reefs, Pandora, Orpheus and Rib, that experienced in April 2017, degree heating weeks (DHW) of 9, 8 and 7, respectively. Orpheus experienced the worst bleaching, based on visual health score, followed by Rib and Pandora. Rib experienced the greatest mortality (78% by Nov 2017); however, this was attributed to the presence of actively feeding crown-of-thorns starfish. Growth rates of A. millepora were almost twice the rate of P. acuta. Both species showed significant seasonal variation with growth of A. millepora and P. acuta 35–40% and 23–33% significantly greater in the summer, respectively. Differences in growth rates were best explained by indicators of energy acquisition. For example, the most important predictor variable in determining higher growth rates and visual health score in A. millepora was chlorophyll a content. For P. acuta, visual health score was the best predictor variable for higher growth rates. This study highlights the important role that chlorophyll a and associated symbionts play in growth and survival in these corals during and after a heat stress event
    • …
    corecore