365 research outputs found

    Characterizing and correcting the proper motion bias of the bright Gaia EDR3 sources

    Full text link
    In this paper we characterize magnitude-dependent systematics in the proper motions of the Gaia EDR3 catalog and provide a prescription for their removal. The reference frame of bright stars (G<13) in EDR3 is known to rotate with respect to extragalactic objects, but this rotation has proven difficult to characterize and correct. We employ a sample of binary stars and a sample of open cluster members to characterize this proper motion bias as a magnitude-dependent spin of the reference frame. We show that the bias varies with G magnitude, reaching up to 80 {\mu}as/yr for sources in the range G = 11 - 13, several times the formal EDR3 proper motion uncertainties. We also show evidence for an additional dependence on the color of the source, with a magnitude up to 10 {\mu}as/yr. However, a color correction proportional to the effective wavenumber is unsatisfactory for very red or very blue stars and we do not recommend its use. We provide a recipe for a magnitude-dependent correction to align the proper motion of the Gaia EDR3 sources brighter than G=13 with the International Celestial Reference Frame

    Open Clusters as Tracers of the Galactic Disk

    Get PDF
    Open clusters (OCs) are routinely used as reliable tracers of the properties and evolution of the galactic disk, as they can be found at all galactocentric distances and span a wide range of ages. More than 3000 OCs are listed in catalogues, although few have been studied in details. The goal of this work is to study the properties of open clusters. This work was conducted in the framework of the Gaia-ESO Survey(GES). GES is an observational campaign targeting more than 100,000 stars in all major components of the Milky Way, including stars in a hundred open clusters. It uses the FLAMES instrument at the VLT to produce high and medium-resolution spectra, which provide accurate radial velocities and individual elemental abundances. In this framework, the goals of the Thesis are: - to study the properties of OCs and of their stars from photometry and spectroscopy to derive their age, the extinction and the chemical composition of the stars, to begin to build a homogeneous data base. Looking at literature data it is clear that different authors derive substantially different chemical compositions, and in general OC parameters. - the study of OCs and their chemical homogeneity (or inhomogeneity) can cast light on what is still an open issue: the presence of multiple populations in clusters. While multiple generations of stars are now ubiquitously found in globular clusters in the Milky Way and in the Magellanic Clouds, they have not been yet detected in open clusters. What is the main driver of the self-pollution process? - to study the cluster formation process. All, or at least a significant fraction of stars form in clusters. Young clusters (a few Myr) can retain some of the properties of the molecular cloud they originate from and give us insight about the cluster assembly process. The first GES data release contains data for the young OC Gamma Velorum, in which two (dynamically different) subpopulations have been identified. This cluster can serve as a test case for star formation mechanisms. - the study of the OCs can shed light on the disk properties, in particular on the presence of a chemical gradient. Studying the distribution of chemical elements across the Galactic disk has been a central question in astronomy for the past decade. The exact shape of this metallicity gradient, revealed by various tracers such as Cepheids, Planetary Nebulae or HII regions is not quite clear. OCs suggest a flattening of the gradient in the outer disk. Here I will investigate the issue using the GES data set. Methods: The data analysis of the GES is a complex task carried out by different groups. When dealing with a huge quantity of astronomical data, it is essential to have tools that economically process large amounts of information and produce repeatable results. As part of the GES I developed an automated tool to measure the EWs in spectra of FGK stars in a fully automatic way. This tool, called DAOSPEC Option Optimizer pipeline (DOOp), uses DAOSPEC and optimizes its key parameters in order to make the measurements as robust as possible. This tool was widely tested on synthetic and observational spectra. Stellar parameters and elemental abundances are derived with the code FAMA developed with the aim of dealing with large batches of stars. FAMA uses the widely used software MOOG and optimizes stellar parameters in order to satisfy the excitation and ionization balance, following the classical equivalent width procedure. The construction of a metallicity scale, based on high-quality spectra of benchmark stars is fundamental to interpret the spectroscopic results in the context of the Galaxy formation and evolution. We take advantage of the variety of analysis methods represented within the GES collaboration, including DOOp+ FAMA in order to produce a homogeneous metallicity scale. Those reference stars can be used to assess the precision and accuracy of a given method. Results: Using archival photometric data, I presents an in-depth study of NGC 6705 and Trumpler 20 for which I derive ages of 250-320 Myr and 1.25-1.66 Gyr (respectively). I take advantage of the wide field covered by the VPHAS data to map extinction using field red clump stars as tracers and show that the core of NGC 6705 is situated in an area of low reddening, but the outskirts are seen projected on areas of various levels of extinction, making it difficult to estimate accurately the stellar density, and making estimates of the tidal radius of NGC 6705 unreliable. Differential extinction in the region of Trumpler 20 is estimated using main sequence stars. I find a mass of 6850 +/- 1900 M for NGC 6705, from the luminosity function although strong mass segregation and and patchy extinction in the outskirts of the cluster make this number a lower limit, and derive a total mass of 6700 +/- 800 M for Tr20. These estimates are in agreement with the mass derived from the velocity dispersion. We find that the apparently broad turn-off region in the CMD of Tr20 can be explained by differential reddening, but the origin of its notorious extended red clump remains unclear. I presents a membership determination and spectroscopic study for NGC 6705, Trumpler 20, and NGC 4815. We find mean iron abundances [Fe/H]=0.10, 0.17 and 0.16 dex for these three inner disk clusters. I show that within the uncertainties, they are chemically homogeneous clusters. This result adds weight to the hypothesis that only clusters above the mass of 4x10^4 solar masses may be massive enough to form multiple populations. I study the star-forming region Gamma Velorum, which has recently been shown to be made up of two different populations (A and B) with different kinematical signatures. N-Body simulations suggest that one of the populations (population B) is unbound and rapidly expanding. In addition, the B population is less dense and less concentrated. It also appears marginally more fractal. The supervirial state of population B indicates that star formation efficiency was lower than in A, or that the parent molecular cloud was dispersed very quickly. The presence of multiple clustering of stars as in this region is not peculiar, and is often observed in large star forming regions in the Milky Way and in the Magellanic Clouds. I present abundance determinations from archived Keck (HIRES) data for four outer disk clusters (Berkeley 22, Berkeley 29, Berkeley 66, and Saurer 1). From their α-element abundances I see no clear sign that these objects are associated with the galactic anticentre structure. Complementing our sample of clusters with preliminary data from the newer GES releases, I confirm that the metallicity gradient is steep in the inner disk and much shallower (or flat) in the outer disk. The presence of a bimodal gradient has important implications on the possible scenarios of galaxy formation and evolution and is predicted by a variety of theoretical models. It comes as a natural outcome of the models involving radial migration

    Hunting for open clusters in \textit{Gaia} DR2: the Galactic anticentre

    Full text link
    The Gaia Data Release 2 (DR2) provided an unprecedented volume of precise astrometric and excellent photometric data. In terms of data mining the Gaia catalogue, machine learning methods have shown to be a powerful tool, for instance in the search for unknown stellar structures. Particularly, supervised and unsupervised learning methods combined together significantly improves the detection rate of open clusters. We systematically scan Gaia DR2 in a region covering the Galactic anticentre and the Perseus arm (120≀l≀205(120 \leq l \leq 205 and −10≀b≀10)-10 \leq b \leq 10), with the goal of finding any open clusters that may exist in this region, and fine tuning a previously proposed methodology successfully applied to TGAS data, adapting it to different density regions. Our methodology uses an unsupervised, density-based, clustering algorithm, DBSCAN, that identifies overdensities in the five-dimensional astrometric parameter space (l,b,ϖ,Όα∗,ΌΎ)(l,b,\varpi,\mu_{\alpha^*},\mu_{\delta}) that may correspond to physical clusters. The overdensities are separated into physical clusters (open clusters) or random statistical clusters using an artificial neural network to recognise the isochrone pattern that open clusters show in a colour magnitude diagram. The method is able to recover more than 75% of the open clusters confirmed in the search area. Moreover, we detected 53 open clusters unknown previous to Gaia DR2, which represents an increase of more than 22% with respect to the already catalogued clusters in this region. We find that the census of nearby open clusters is not complete. Different machine learning methodologies for a blind search of open clusters are complementary to each other; no single method is able to detect 100% of the existing groups. Our methodology has shown to be a reliable tool for the automatic detection of open clusters, designed to be applied to the full Gaia DR2 catalogue.Comment: 8 pages, accepted by Astronomy and Astrophysics (A&A) the 14th May, 2019. Tables 1 and 2 available at the CD

    Abundances and kinematics for ten anticentre open clusters

    Get PDF
    Open clusters are distributed all across the disk and are convenient tracers of its properties. In particular, outer disk clusters bear a key role for the investigation of the chemical evolution of the Galactic disk. The goal of this study is to derive homogeneous elemental abundances for a sample of ten outer disk OCs, and investigate possible links with disk structures such as the Galactic Anticenter Stellar Structure. We analyse high-resolution spectra of red giants, obtained from the HIRES@Keck and UVES@VLT archives. We derive elemental abundances and stellar atmosphere parameters by means of the classical equivalent width method. We also performed orbit integrations using proper motions. The Fe abundances we derive trace a shallow negative radial metallicity gradient of slope -0.027+/-0.007 dex.kpc-1 in the outer 12 kpc of the disk. The [alpha/Fe] gradient appears flat, with a slope of 0.006+/-0.007 dex.kpc-1 . The two outermost clusters (Be 29 and Sau 1) appear to follow elliptical orbits. Be 20 also exhibits a peculiar orbit with a large excursion above the plane. The irregular orbits of the three most metal-poor clusters (of which two are located at the edge of the Galactic disk), if confirmed by more robust astrometric measurements such as those of the Gaia mission, are compatible with an inside-out formation scenario for the Milky Way, in which extragalactic material is accreted onto the outer disk. We cannot determine if Be 20, Be 29,and Sau 1 are of extragalactic origin, as they may be old genuine Galactic clusters whose orbits were perturbed by accretion events or minor mergers in the past 5 Gyr, or they may be representants of the thick disk population. The nature of these objects is intriguing and deserves further investigations in the near future.Comment: 17 pages, 9 figures; accepted for publication in A&

    A ring in a shell: the large-scale 6D structure of the Vela OB2 complex

    Get PDF
    The Vela OB2 association is a group of 10 Myr stars exhibiting a complex spatial and kinematic substructure. The all-sky Gaia DR2 catalogue contains proper motions, parallaxes (a proxy for distance) and photometry that allow us to separate the various components of Vela OB2. We characterise the distribution of the Vela OB2 stars on a large spatial scale, and study its internal kinematics and dynamic history. We make use of Gaia DR2 astrometry and published Gaia-ESO Survey data. We apply an unsupervised classification algorithm to determine groups of stars with common proper motions and parallaxes. We find that the association is made up of a number of small groups, with a total current mass over 2330 Msun. The three-dimensional distribution of these young stars trace the edge of the gas and dust structure known as the IRAS Vela Shell across 180 pc and shows clear signs of expansion. We propose a common history for Vela OB2 and the IRAS Vela Shell. The event that caused the expansion of the shell happened before the Vela OB2 stars formed, imprinted the expansion in the gas the stars formed from, and most likely triggered star formation.Comment: Accepted by A&A (02 November 2018), 13 pages, 9+2 figure

    Two kinematically distinct old globular cluster populations in the Large Magellanic Cloud

    Get PDF
    We report results of proper motions of 15 known Large Magellanic Cloud (LMC) oldglobular clusters (GCs) derived from the Gaia DR2 data sets. When these mean propermotions are gathered with existent radial velocity measurements to compose the GCsŽ velocity vectors, we found that the projection of the velocity vectors onto the LMC plane and those perpendicular to it tell us about two distinct kinematic GCpopulations. Such a distinction becomes clear if the GCs are split at a perpendicularvelocity of 10 km/s (absolute value). The two different kinematic groups also exhibitdifferent spatial distributions. Those with smaller vertical velocities are part of theLMC disc, while those with larger values are closely distributed like a sphericalcomponent. Since GCs in both kinematic-structural components share similar ages andmetallicities, we speculate with the possibility that their origins could have occurredthrough a fast collapse that formed halo and disc concurrently.Fil: Piatti, Andres Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; ArgentinaFil: Alfaro Navarro, Emilio Javier. Instituto de Astrofísica de Andalucía; EspañaFil: Cantat-Gaudin, Tristan. Universidad de Barcelona; Españ

    DOOp, an automated wrapper for DAOSPEC

    Full text link
    Large spectroscopic surveys such as the Gaia-ESO Survey produce huge quantities of data. Automatic tools are necessary to efficiently handle this material. The measurement of equivalent widths in stellar spectra is traditionally done by hand or with semi-automatic procedures that are time-consuming and not very robust with respect to the repeatability of the results. The program DAOSPEC is a tool that provides consistent measurements of equivalent widths in stellar spectra while requiring a minimum of user intervention. However, it is not optimised to deal with large batches of spectra, as some parameters still need to be modified and checked by the user. Exploiting the versatility and portability of BASH, we have built a pipeline called DAOSPEC Option Optimiser (DOOp) automating the procedure of equivalent widths measurement with DAOSPEC. DOOp is organised in different modules that run one after the other to perform specific tasks, taking care of the optimisation of the parameters needed to provide the final equivalent widths, and providing log files to ensure better control over the procedure. In this paper, making use of synthetic and observed spectra, we compare the performance of DOOp with other methods, including DAOSPEC used manually. The measurements made by DOOp are identical to the ones produced by DAOSPEC when used manually, while requiring less user intervention, which is convenient when dealing with a large quantity of spectra. DOOp shows its best performance on high-resolution spectra (R>20 000) and high signal-to-noise ratio (S/N>30), with uncertainties ranging from 6 m{\AA} to 2 m{\AA}. The only subjective parameter that remains is the normalisation, as the user still has to make a choice on the order of the polynomial used for the continuum fitting. As a test, we use the equivalent widths measured by DOOp to re-derive the stellar parameters of four well-studied stars

    FAMA: An automatic code for stellar parameter and abundance determination

    Full text link
    The large amount of spectra obtained during the epoch of extensive spectroscopic surveys of Galactic stars needs the development of automatic procedures to derive their atmospheric parameters and individual element abundances. Starting from the widely-used code MOOG by C. Sneden, we have developed a new procedure to determine atmospheric parameters and abundances in a fully automatic way. The code FAMA (Fast Automatic MOOG Analysis) is presented describing its approach to derive atmospheric stellar parameters and element abundances. The code, freely distributed, is written in Perl and can be used on different platforms. The aim of FAMA is to render the computation of the atmospheric parameters and abundances of a large number of stars using measurements of equivalent widths as automatic and as independent of any subjective approach as possible. It is based on the simultaneous search for three equilibria: excitation equilibrium, ionization balance, and the relationship between \fei\ and the reduced equivalent widths. FAMA also evaluates the statistical errors on individual element abundances and errors due to the uncertainties in the stellar parameters. The convergence criteria are not fixed 'a priori' but are based on the quality of the spectra. In this paper we present tests performed on the Solar spectrum EWs which tests the dependency on the initial parameters, and the analysis of a sample of stars observed in Galactic open and globular clusters.Comment: A&A accepted, 12 pages, 6 figures, 3 table

    The extended halo of NGC 2682 (M 67) from Gaia DR2

    Full text link
    Context: NGC 2682 is a nearby open cluster, approximately 3.5 Gyr old. Dynamically, most open clusters should dissolve on shorter timescales, of ~ 1 Gyr. Having survived until now, NGC 2682 was likely much more massive in the past, and is bound to have an interesting dynamical history. Aims: We investigate the spatial distribution of NGC 2682 stars to constrain its dynamical evolution, especially focusing on the marginally bound stars in the cluster outskirts. Methods: We use Gaia DR2 data to identify NGC 2682 members up to a distance of ~150 pc (10 degrees). Two methods (Clusterix and UPMASK) are applied to this end. We estimate distances to obtain three-dimensional stellar positions using a Bayesian approach to parallax inversion, with an appropriate prior for star clusters. We calculate the orbit of NGC 2682 using the GRAVPOT16 software. Results: The cluster extends up to 200 arcmin (50 pc) which implies that its size is at least twice as previously believed. This exceeds the cluster Hill sphere based on the Galactic potential at the distance of NGC 2682. Conclusions: The extra-tidal stars in NGC 2682 may originate from external perturbations such as disk shocking or dynamical evaporation from two-body relaxation. The former origin is plausible given the orbit of NGC 2682, which crossed the Galactic disk ~40 Myr ago.Comment: 9 pages, 5 figures, accepted for publication on A&
    • 

    corecore