159 research outputs found

    Avaliação do método do salicilato para determinação de amônio em extratos de solos minerais.

    Get PDF
    O método do salicilato para determinação de amônio em extratos de solo e água tem se mostrado uma alternativa prática e eficiente, embora pouco difundida e utilizada em laboratórios de rotina de análise de solo. Este trabalho objetivou avaliar o potencial desse método na determinação de NH4+ em extratos de solos brasileiros, comparativamente ao método padrão de Kjeldhal. Numa primeira fase, foram feitas avaliações dos fatores: luminosidade (luz natural e escuro), temperatura (ambiente, 37 e 70oC) e tempo de reação (20, 40, 60, 120 e 180 min) no desenvolvimento do complexo azul-esmeralda. Num segundo momento, após padronização da marcha analítica, procederam-se a extração do NH4+ em 12 solos brasileiros de diferentes naturezas e a sua determinação pelos métodos supracitados. As avaliações indicaram que a temperatura ambiente e a luminosidade natural não interferiram acentuadamente nas determinações de amônio de curvas- padrão. Porém a temperatura de 37°C reduziu o tempo para desenvolvimento de cor azul-esmeralda deste método para 60 min, permitindo ainda maior estabilidade da absorbância. Embora o método do salicilato modificado tenha permitido boa correlação com o método de Kjeldhal, foi observada uma capacidade diferenciada de recuperação de amônio em função do aumento de sua concentração no extrato, sendo essa interferência maior para o solo com maior teor de argila e matéria orgânica. Recomenda-se mais estudos com o método para que as interferências observadas sejam sanadas.bitstream/CNPS-2010/14866/1/bpd-133-metodo-salicilato.pd

    Transporte de NO3 e NH4 em agregados de Latossolo Vermelho com e sem atividade biológica.

    Get PDF
    Objetivou-se, com este trabalho, avaliar a influência do tamanho dos agregados de um Latossolo Vermelho distrófico sobre as transformações e transporte do amônio e do nitrato em condições de presença e ausência de atividade biológica. Utilizou-se o fatorial 23 x 4, com fatores e níveis: vegetação de cobertura do solo (cerrado e milho ); atividade biológica (com e sem esterilização do solo); fontes de N da solução com 10 mmol L-1 de N, para saturação das colunas (Ca(NO3)2 e NH4CI) e classes de agregados (2,0 a 1,0; 1,0 a 0,5; 0,5 a 0,25 e 0,25 a 0,105 mm). Na primeira eluição, o efluente das colunas contendo microbiota ativa e saturação com Ca(NO3)2 apresentou teor de NO3 - menor no efluente dos agregados de 0,25 a 0,105 mm; já em condições de esterilização, ocorreu o inverso: maior concentração do NO3 -no efluente dos agregados de 0,25 a 0,105 mm. Para as colunas saturadas com NH4CI, na primeira eluição os teores do NH4+ foram maiores nos efluentes dos agregados de 0,25 a 0,105 mm para todas as combinações de cobertura de solo e esterilização, enquanto na presença da microbiota ativa o efluente dos agregados de 0,25 a 0,105 mm apresentou teor semelhante ao dos agregados de 0,5 a 0,25 mm

    Carbon based substrates for interfacing neurons: Comparing pristine with functionalized carbon nanotubes effects on cultured neuronal networks

    Get PDF
    Pristine (as prepared) carbon nanotube (CNT) based substrates have been widely used to grow and interface neurons in culture. Nerve cells normally differentiate on CNTs and the synaptic networks, newly formed at the interface with this material, usually show an improved robustness in signal transfer. However manipulation of pristine CNTs is often prevented by their low dispersibility and tendency to aggregate in most solvents. This issue can be at least partially solved by adding solubilizing groups to the surface of CNT, which also helps improving their biocompatibility. It becomes therefore of crucial importance to determine whether chemically manipulated CNTs may maintain their performance in improving nerve signaling. Here we study and compare the impact in vitro on neuronal signaling of two classes of chemically modified multiwalled CNTs in reference to pristine CNTs, which are known to be a substrate able to boost neuronal growth and communication. We found that the extent of functionalization and the nature of the functional groups on MWNT sidewalls affect the conductivity and the biological effects of the final derivatives. This information is important for the future design of biointegrated devices

    Insights into a Protein-Nanoparticle System by Paramagnetic Perturbation NMR Spectroscopy

    Get PDF
    BACKGROUND: The interaction between proteins and nanoparticles is a very relevant subject because of the potential applications in medicine and material science in general. Further interest derives from the amyloidogenic character of the considered protein, \u3b22-microglobulin (\u3b22m), which may be regarded as a paradigmatic system for possible therapeutic strategies. Previous evidence showed in fact that gold nanoparticles (AuNPs) are able to inhibit \u3b22m fibril formation in vitro. METHODS: NMR (Nuclear Magnetic Resonance) and ESR (Electron Spin Resonance) spectroscopy are employed to characterize the paramagnetic perturbation of the extrinsic nitroxide probe Tempol on \u3b22m in the absence and presence of AuNPs to determine the surface accessibility properties and the occurrence of chemical or conformational exchange, based on measurements conducted under magnetization equilibrium and non-equilibrium conditions. RESULTS: The nitroxide perturbation analysis successfully identifies the protein regions where protein-protein or protein-AuNPs interactions hinder accessibility or/and establish exchange contacts. These information give interesting clues to recognize the fibrillation interface of \u3b22m and hypothesize a mechanism for AuNPs fibrillogenesis inhibition. CONCLUSIONS: The presented approach can be advantageously applied to the characterization of the interface in protein-protein and protein-nanoparticles interactions

    Conversion of the Native N-Terminal Domain of TDP-43 into a Monomeric Alternative Fold with Lower Aggregation Propensity

    Get PDF
    TAR DNA-binding protein 43 (TDP-43) forms intraneuronal cytoplasmic inclusions associated with amyotrophic lateral sclerosis and ubiquitin-positive frontotemporal lobar degeneration. Its N-terminal domain (NTD) can dimerise/oligomerise with the head-to-tail arrangement, which is essential for function but also favours liquid-liquid phase separation and inclusion formation of full-length TDP-43. Using various biophysical approaches, we identified an alternative conforma-tional state of NTD in the presence of Sulfobetaine 3-10 (SB3-10), with higher content of α-helical structure and tryptophan solvent exposure. NMR shows a highly mobile structure, with partially folded regions and β-sheet content decrease, with a concomitant increase of α-helical structure. It is monomeric and reverts to native oligomeric NTD upon SB3-10 dilution. The equilibrium GdnHCl-induced denaturation shows a cooperative folding and a somewhat lower conformational stability. When the aggregation processes were compared with and without pre-incubation with SB3-10, but at the identical final SB3-10 concentration, a slower aggregation was found in the former case, despite the reversible attainment of the native conformation in both cases. This was attributed to protein monomerization and oligomeric seeds disruption by the conditions promoting the alternative con-formation. Overall, the results show a high plasticity of TDP-43 NTD and identify strategies to monomerise TDP-43 NTD for methodological and biomedical applications

    Calcium Binds to Transthyretin with Low Affinity

    Get PDF
    The plasma protein transthyretin (TTR), a transporter for thyroid hormones and retinol in plasma and cerebrospinal fluid, is responsible for the second most common type of systemic (ATTR) amyloidosis either in its wild type form or as a result of destabilizing genetic mutations that increase its aggregation propensity. The association between free calcium ions (Ca2+) and TTR is still debated, although recent work seems to suggest that calcium induces structural destabilization of TTR and promotes its aggregation at non-physiological low pH in vitro. We apply high-resolution NMR spectroscopy to investigate calcium binding to TTR showing the formation of labile interactions, which leave the native structure of TTR substantially unaltered. The effect of calcium binding on TTR-enhanced aggregation is also assessed at physiological pH through the mechano-enzymatic mechanism. Our results indicate that, even if the binding is weak, about 7% of TTR is likely to be Ca2+-bound in vivo and therefore more aggregation prone as we have shown that this interaction is able to increase the protein susceptibility to the proteolytic cleavage that leads to aggregation at physiological pH. These events, even if involving a minority of circulating TTR, may be relevant for ATTR, a pathology that takes several decades to develop
    corecore