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ABSTRACT  

Pristine (as prepared) carbon nanotube (CNT) based substrates have been widely used to grow and 

interface neurons in culture. Nerve cells normally differentiate on CNTs and the synaptic networks, 

newly formed at the interface with this material, usually show an improved robustness in signal 

transfer. However manipulation of pristine CNTs is often prevented by their low dispersibility and 

tendency to aggregate in most solvents. This issue can be at least partially solved by adding 

solubilizing groups to the surface of CNT, which also helps improving their biocompatibility. It 

becomes therefore of crucial importance to determine whether chemically manipulated CNTs may 

maintain their performance in improving nerve signaling. Here we study and compare the impact in 

vitro on neuronal signaling of two classes of chemically modified multiwalled CNTs in reference to 

pristine CNTs, which are known to be a substrate able to boost neuronal growth and 

communication. We found that the extent of functionalization and the nature of the functional 

groups on MWNT sidewalls affect the conductivity and the biological effects of the final 

derivatives. This information is important for the future design of biointegrated devices. 
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1. INTRODUCTION 

Among the possible biological applications of carbon nanotubes (CNTs), tissue engineering seems 

to be one of the more promising [1]. In particular, due to their peculiar features of flexibility, 

electrical conductivity and mechanical strength, CNTs appear to be really ideal for the interaction 

with electrically active tissues, like neuronal and cardiac tissues. During the last two decades many 

studies have demonstrated that CNT substrates are able to sustain neuronal survival and to promote 

neuronal process outgrowth [2-5]. We have recently shown that CNT-based substrates are indeed 

able to affect neuronal physiology from the electrical signaling point of view. Hippocampal 

neuronal networks directly grown on pure multi walled carbon nanotube (MWNT) substrates show 

an increased frequency of spontaneous synaptic events (postsynaptic currents) through a promoted 

generation of synaptic contacts and potentiation of synaptic and non-synaptic responses [6,7,8]. In 

brief, it has been demonstrated that CNT are able to favor synaptogenesis and thus the global neuro-

connectivity of a neural circuit and that the synapses that are newly-formed in the presence of CNT 

display different short-term plasticity features, namely the capacity of neural transmission to 

transiently change in strength when synapses are repeatedly activated [7]. Moreover, the impact of 

CNT on central nervous system 3D tissue has been tested by co-culturing embryonic spinal cord 

and dorsal root ganglia explants chronically interfaced to a film of purified MWNT [9]. CNT 

scaffolds are able to improve the outgrowth of neurites (enriched with more growth cones) 

expanding radially from the explants, thus positively influencing axonal re-growth [9]. When 

analyzing network activities by patch clamp recordings of single neurons, we observed a shift 

towards potentiation in spinal network communication dynamics in spinal explants interfaced to 

carbon nanotubes. 

The manipulation of properly functionalized MWNTs is much easier in comparison to unmodified, 

pristine MWNT (pMWNT), because after functionalization the MWNTs become more easily 

dispersible in organic and aqueous solvents. Moreover it was demonstrated that the toxicity of these 
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carbon nanomaterials can be dramatically alleviated increasing their water solubility obtained 

through debundling of long CNT fibers [10]. The functionalization versatility might also improve 

neuronal affinity if we imagine to use nerve growth factors in the structure modification process. In 

literature, functionalized CNTs interfaced with neuronal cells are often intended to be variously 

oxidized CNTs that are functionalized with other groups after the oxidation [3, 13, 11]. This 

approach involves a quite invasive process that can alter the pristine features of CNTs and could not 

be predictive of the real effects that their peculiar structure can produce when interfaced to neuronal 

networks.  

Few studies of the effects of covalent modification of CNT sidewalls on neuronal cultures have 

been reported so far, except for papers that describe the effect of variously oxidated derivatives. Liu 

et al. analyzed how chemical surface functionalization (both covalent and non-covalent) of MWNT 

arrays affects neuronal adhesion and network organization. They found that the affinity and the 

morphology of neurons changes dramatically from one substrate to the other. The authors remark 

that the hydrophilicity and the chemical nature of the substrate are able to tune the modalities of 

growth of the cultures (formation of clusters vs. regular networks, poor vs good neurites extension 

that implies poor vs. good intercellular communication). As a conclusion, it turns out that the 

control and choice of the functionalization strategy is crucial for the impact on cell growth and 

development [10]. To further explore the impact of functionalized CNT scaffolds on neuronal 

networks, and to improve the versatility of the materials used, we here report the effects of two 

kinds of covalently modified MWNTs on neuronal communication. In particular we have chosen 

two well known chemical approaches like 1,3-dipolar cycloaddition of azomethine ylides [15,16] 

and the radical diazonium salt arylation [17]. 

2. EXPERIMENTAL PART 

2.1 MATERIALS 
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MWNT were purchased at Nanoamor Inc. (stock # 1237YJS, 95%, OD 20/30 nm, length 0.5-2 µm). 

All the chemicals and solvents were purchased at Sigma Aldrich and used without any further 

purification. 

2.2 SYNTHESIS 

MWNT1: 100 mg of pristine MWNT (MWNTp) are dispersed in 100 mL of ortho-dichlorobenzene 

(ODCB) and sonicated in a sonic bath for 15 minutes. 1.4 g (4 mmol) of N-phtalimido-amino-

diethoxyethyl acetic acid [11] and 750 mg (160 mmol) of paraformaldehyde are added portionwise 

in 4 portions every 2 hours while the mixture is refluxing at 180°C. The reaction is then refluxed at 

180°C for other 16 hours (22 hours in total). The crude is filtered on Millipore JHWP filters (0.45 

µm) and washed several time with dimethylformamide, methanol and finally diethyl ether. The 

powder is then dried in vacuo and weighs 108 mg.  

100 mg of the black powder are sonicated for 20 minutes in 100 ml of ethanol and then 625µl 

(0.012 mmol) of hydrazine monohydrate are added. The mixture is stirred at room temperature for 

16 hours. The crude is then filtered on Millipore JHWP filters (0.45 µm) and washed several times 

with methanol and diethyl ether. The dried powder weights 105 mg.  

HL (high loading)- (and LL (low loading)-) MWNT2: 100 mg of pMWNT are dispersed in 100 

mL of water and sonicated for 20 minutes. 2 g (0.25 g for LL) of 4- [(N-Boc)aminomethyl]aniline 

and 2ml (0.25 ml for LL) of isopentyl nitrite are added. The mixture is stirred at 80°C for 8 hours. 

The crude is filtered on Millipore JHWP filters (0.45 µm) and washed several times with water, 

dimethylformamide, methanol and finally diethyl ether. The powder is then dried in vacuo and 

weights 114 (112 for LL) mg. 

100 mg of the black powder are dissolved in 100 ml of chloridric acid 4M in dioxane and stirred at 

room temperature for 16 hours. The crude is then filtered on Millipore JHWP filters (0.45 µm) and 

washed several time with methanol and diethyl ether. The dried powder weights 104 (102) mg. 
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2.3 CHARACTERIZATION METHODS 

UV–vis–NIR spectra were recorded on a Cary 5000 Spectrophotometer (Varian), using 1cm path 

quartz or optical glass cuvettes. Thermogravimetric analyses were performed using a TGA Q500 

(TA Instruments). Conductivity measurements were performed using a Jandel resistivity meter 

(RM-3000) and a Jandel four point probe. Electrical conductivities on MWNT powder were 

measured after filtration of 1 mg of the material on a PTFE filter (Millipore 0.45µm pores, 90 mm 

diameter). The average membrane thickness was measured with a micrometer(High-Accuracy 

Digimatic Micrometer 293-100, Mitutoyo). SEM imaging was performed on a SUPRA 40 (Carl 

Zeiss AG). 

 

2.4 CELL CULTURES 

Primary dissociated cultures from newborn rat hippocampi were obtained as previously described 

[6]. Neurons were seeded on control (see below) substrates, on MWNT1, HL-MWNT2and on LL-

MWNT2. Neuronal and glial cells density, quantified by immunofluorescence measures (see 

Supporting Information and Figure 1a) was similar in all substrates (for control, MWNT1 and HL-

MWNT2, respectively: 177 ± 17, 169 ± 21 and 150 ± 20 neurons/mm
2
, n=12, 11 and 8 visual fields; 

166 ± 17, 147 ± 12 and 140 ± 11 glial cells/mm2, n=12, 14 and 9 visual fields; n=2 culture series). 

Electrophysiological recordings were performed by the patch-clamp technique [6] (see Supporting 

Information for details).  

Data are expressed as mean ± S.E.M. .n is the number of neurons, if not otherwise indicated. 

Student's t test was used for parametric data, and Mann-Whitney and Fisher tests for non-parametric 

data. A P value <0.05 has been taken as indicative of statistically significant difference. 

3. RESULTS AND DISCUSSION 
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We used two well known reactions to functionalize MWNTs: a) the 1,3-dipolar cycloaddition of 

azomethine ylides that, starting from an aldehyde and an α-aminoacid, generates a pyrrolidine ring 

on the MWNT surface (Figure 1a) [15, 16], and b) the radical diazonium salt arylation of MWNTs 

using a substituted aniline and isoamyl nitrite as shown on Figure1b [17]. The latter reaction is quite 

invasive, in terms of functionalization degree, giving rise to MWNTs with a high loading of 

functionalizing groups (HL-MWNT). In order to check the effect of the functionalization degree on 

neuronal behavior, we used both the already known protocol [17] and controlled concentrations of 

the starting materials in order to have a lower functionalization degree (low loading, LL-MWNT). 

In order to have the half quantity of functionalization (table 1), we have found that it is necessary to 

use 8 times less concentrated reagents (see Synthesis paragraph). Chemical reactions of MWNTs 

are not easy to control and the protocol reported here is the result of an optimization process aimed 

at producing half functionalization degree (for a commentary on control of functionalization 

reactions, please, see ref. 18). 
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Fig. 1: a) 1,3-dipolar cycloaddition reaction route to provide MWNT1; b) diazonium salt arylation 

reaction route to provide MWNT2 (HL and LL) 

All the products were characterized by TGA and the Kaiser test for primary amino groups. 

Type of CNT TGA (µmol/g) Kaiser test (µmol/g) Resistivity Ω * cm 

pMWNT - - 0.16 

MWNT1 170 140 0.32 

HL-MWNT2 230 220 293 

LL-MWNT2 120 110 171 
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Table 1. TGA (µmol of functionalizing groups per gram of material), Kaiser test and conductivity 

data for the MWNTs prepared in this work. 

After the purification, the derivatives were dispersed at a concentration of 0.1 mg/ml in ethyl 

acetate and were deposited on glass coverslips by spray coating (see Supporting Information). The 

coated materials on the coverslips were observed by SEM (see Fig. 1 in Supplementary Data) and 

their sheet resistance has been evaluated by means of a 4-point probe conductimeter and have been 

compared to that of pMWNT. The resulting values are reported in Table 1. 

The data reported in Table 1 indicate that the functionalization degree of the cycloaddition reaction 

(MWNT1) is lower than that of the arylation reaction (HL-MWNT2) [19]. However, the level of 

functionalization in LL-MWNT2 is even lower that MWNT1. In addition, it is interesting to note 

that the sheet resistance for MWNT1 is much lower than both HL- and LL-MWNT2. Therefore, 

this might indicate that not only the loading amount but also the chemical nature of the side chain 

may affect the electronic properties of the external shell of MWNT, that is known to possess 

metallic features [20].  

In order to evaluate the effects of both the chemical functionalizations and the side chains on the 

synaptic activity of neuronal cells, dissociated hippocampal cultures [6, 7] were seeded on control 

glass, i.e. glass coverslips previously treated with (3-aminopropyl)trimethoxysilane to create amino 

group on their surface [21], and on functionalized CNTs. 
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Figure 2. 

MWNT1 potentiate neuronal networks at the interface. a, immunofluorescence micrographs 

showing the typical appearance of hippocampal neurons (left, stained in red) and glial cells (right, 

stained in green) in culture on MWNT cultures. Cellular nuclei are marked in blue; b, top, 

representative traces of spontaneous postsynaptic currents (PSCs) recorded from neurons in control, 

MWNT1, HL-MWNT2 and LL-MWNT2. Bottom, PSC frequency is strongly increased in 

MWNT1, but unaltered in the other substrates (left), while PSC amplitude is similar for all 

substrates (right). ***: P<0.001; c, sketch for pair recordings. An action potential (top right) is 

evoked in the presynaptic neuron (top left). The presence of a unitary synaptic current (bottom 

right) in the postsynaptic neuron (bottom left) in response to the action potential indicates the 

presence of a unique coupling between the two neurons. The histogram shows the percentage of 

synaptically coupled pairs over the total number of pairs tested, which is increased by MWNT1. 

***: P<0.001. 

 

All the substrates used were biocompatible, in that they supported in vitro growth and development 

of both neurons and glial cells (Figure 2a). After 8 days in vitro (DIV) cell densities on 

functionalized MWNT were similar to controls (see “Experimental part”). Supporting the healthy 

cell condition, the neurons passive membrane properties displayed, for all the tested MWNT 

functionalizations, values in agreement with previous control assessments (see Supporting 

Information). Our main aim here was to verify whether MWNTs undergoing different chemical 

functionalization protocols, known to improve their biocompatibility, still retain the ability to 

interact at the interface with neurons and neuronal networks leading to increased neuronal synaptic 

connectivity [7,8]. To address this issue, in a first set of experiments we tested the main 

electrophysiological parameter known to be affected by pristine MWNTs i.e. the frequency of the 

spontaneous post synaptic currents (PSC) generated by the neuronal network activity [6, 7, 9, 22]. 
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Figure 2b shows representative recordings of spontaneous synaptic activity (mixed PSCs are 

appearing as inward current deflections) from voltage clamped neurons in control, MWNT1, HL-

MWNT2 and LL-MWNT2 substrates. We quantified synaptic activity as average frequency and 

amplitude of the detected PSCs [6], and normalized them to the value obtained on control substrate 

(frequency 2.04 ± 0.25 Hz; amplitude 52 ± 3 pA; n=103) for all the functionalized MWNT 

substrates tested. When compared to control substrate, MWNT1 maintained the ability to strongly 

increase PSC frequency (which was 269 ± 33 % of control; n=47; P<0.001) without altering PSC 

amplitude (101 ±8 %, n=47). Conversely, HL-MWNT2neurons were similar to controls in both 

PSC frequency (98 ± 19%; n=21) and amplitude (80± 9 %; n=21; Figure 2b). Notably, LL-MWNT2 

showed a trend for an increase in PSC frequency (158 ± 40 % of control; n=19; P=0.08), while PSC 

amplitude was totally unaltered (103 ± 10 %; n=19). In a second set of experiments we investigated 

in more detail MWNT functionalization at the nanotube side (i.e. MWNT1 and HL-MWNT2) 

exploring two other electrophysiological parameters known to be modulated by pristine MWNTs: i) 

the probability of detecting monosynaptically coupled neurons, and ii) their short term synaptic 

plasticity [7]. We quantified synaptic coupling, an indirect measure of functional contacts formation 

[7], by simultaneous patch clamp of neurons’ pairs. This allows investigating the presence of 

monosynaptic PSC in one neuron (postsynaptic neuron; sketch in Figure 2c, bottom) evoked by 

action potentials elicited in the other cell (presynaptic neuron; Figure 2c, top). The probability 

(expressed as %) of finding coupled pairs in MWNT1 (54%; 14 out of 26 pairs) was significantly 

higher than that detected in control pairs (15%, 5 out of 34 pairs; P<0.01) or in HL-MWNT2 (21%, 

7 out of 34 pairs; Figure 2c, right). In the same set of experiments we tested the dynamic of 

neurotransmission when synapses are repeatedly activated on MWNT1 and HL-MWNT2 

substrates. In each pair a train of 6 action potentials (20 Hz) was elicited in the presynaptic neuron 

and the amplitude of the evoked PSCs in the postsynaptic neuron evaluated (Figure 3). The 

depression of the PSC response was then quantified for each neuron pair as the ratio between the 

amplitudes of the sixth and first PSCs. Compared to controls (strongly depressing: 6
th

/1
st
 PSC ratio 
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0.28 ± 0.07, n=7) neurons interfaced to MWNT1 showed lower depression (6
th

/1
st
 PSC ratio 0.46 ± 

0.07, n=16), while on HL-MWNT2 substrates depression was similar to control (6
th

/1
st
 PSC ratio 

0.18 ± 0.10, n=5; Figure 3). 

 

 

Figure 3. 

MWNT1 modulate neuronal synaptic plasticity. Left, dual recordings in which a train of six action 

potentials at 20 Hz is evoked in the presynaptic neuron (top traces) and the response PSCs are 

recorded during the train in the postsynaptic neuron (bottom traces), from neurons grown on control 

substrate or on MWNT1. The repetitive synaptic activation induces a progressive decrease in PSCs 

amplitude during the train (depression), which is strong in controls in contrast to neurons grown on 

MWNT1. Right, plot quantifying depression as the ratio between the amplitudes of the sixth and 

first PSCs: compared to control, values were higher for neurons on MWNT1, while neurons on HL-

MWNT2 are similar to controls. *: P<0.05.  

 

From the biological data, it can be concluded that MWNT1 functionalization preserves MWNT 

physical-chemical properties involved in transforming neuronal networks at the interface, as 

described in our previous work [6, 7]. The electrophysiological results indicate that the type of 
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functionalization on MWNT is a key determinant of the effect on neuronal network activity, 

independently from its loading.  

4. CONCLUSIONS 

This study achieves a step forward in the study of CNTs as very promising materials for neural 

functional interfaces. The possibility of functionalization offers wide perspectives in the 

manipulation of these materials for the assembly of nanostructured devices able to support and 

stimulate neuronal activity, but the chemical nature of these materials has to be carefully tuned to 

optimize their stimulating effects. 

 

ACKNOWLEDGMENTS 

We gratefully acknowledge Dr. R. Rauti and Dr. L. Masten for culturing procedures. Financial 

support from the EU grant CARBONANOBRIDGE No. 227135 and from the Italian Ministry of 

Education MIUR (cofin Prot. 2010N3T9M4) and PRIN-MIUR n. 2012MYESZW are gratefully 

acknowledged. IOM-TASC national laboratory (Trieste) is also gratefully acknowledged for SEM 

assistance. 

 

REFERENCES 

[1] Bosi S, Fabbro A, Ballerini L, Prato M. Carbon nanotubes: a promise for nerve tissue 

engineering? Nanotechnol. Rev. 2013; 2:47–57. DOI 10.51515/ntrev-2012-0067 

[2] Mattson MP, Haddon RC, Rao M. Molecular functionalization of carbon nanotubes and use 

as substrates for neuronal growth. J. Mol. Neurosci. 2000; 14:175–82. DOI 10.1385/JMN:14:3:175 

[3] Hu H, Ni Y, Montana V, Haddon RC, Parpura V. Chemically functionalized carbon 

nanotubes as substrates for neuronal growth. Nano Lett.2004;4:507–511. DOI 10.1021/nl035193d 



  

 14

[4] Fabbro A, Toma FM, Cellot G, Prato M, and Ballerini L. Carbon nanotubes and neuronal 

performance. In: nanomedicine and the nervous system (Martin CR, Preedy VR Hunter RJ editors.), 

Science Publishers, Enfield, NH 2012, p183−206,. 

[5] Kotov NA, Winter JO, Clements IP, Jan E, Timko BP, Campidelli S, et al. Nanomaterials 

for neural interfaces. Adv. Mater. 2009; 21:3970–4004. DOI 10.1002/adma.200801984 

[6] Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, et al. Carbon 

nanotube substrates boost neuronal electrical signaling. Nano Lett. 2005; 5:1107–10. DOI 

10.1021/nl050637m 

[7] Cellot G, Toma FM, Varley ZK, Laishram J, Villari A, Quintana M, et al. Carbon nanotube 

scaffolds tune synaptic strength in cultured neural circuits: novel frontiers in nanomaterial–tissue 

interactions. J Neurosci. 2011; 31:12945-53. DOI 10.1523/JNEUROSCI.1332-11.2011 

[8] Cellot G, Cilia E. Cipollone S, Rancic V, Sucapane A, Giordani S, et al. Carbon nanotubes 

might improve neuronal performance by favouring electrical shortcuts. Nat. Nanotechnol.2009;4: 

126-133. DOI 10.1038/NNANO.2008.374. 

[9] Fabbro A, Villari A, Laishram J, Scaini D, Toma FM, Turco A, et al. Spinal cord explants 

use carbon nanotube interfaces to enhance neurite outgrowth and to fortify synaptic inputs. ACS 

Nano2012; 6:2041–2055. DOI 10.1021/nn203519r 

[10] Liu J, Appaix F, Bibari O, Marchand G, Benabid AL, et al. Control of neuronal network 

organization by chemical surface functionalization of multi-walled carbon nanotube arrays. 

Nanotechnology 2011; 22: 195101-195112. DOI 10.1088/0957/22/19/195101 

[11] Pastorin G, Wu W, Wieckowski S, Briand JP, Kostarelos K, Prato M, et al. Double 

functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun. 

(Camb).2006; 1:1182–1184. DOI 10.1039/B516309A 

[12] Ali-Boucetta H, Nunes A, Sainz R, Herrero MA, Tian B, Prato M, et al. Asbestos-like 

Pathogenicity of long carbon nanotubes alleviated by chemical functionalization. Angew. Chem. 

Int. Ed. Engl.2013; 52:2274–2278. DOI 10.1002/ange.201207664 



  

 15

[13] Hu H, Ni Y, Mandal SK, Montana V, Zhao B, Haddon RC, et al. Polyethyleneimine 

functionalized single-walled carbon nanotubes as a substrate for neuronal growth. J. Phys. Chem. B 

2005; 109:4285–4289. DOI 10.1021/jp0441137 

[14] Lee HJ, Yoon OJ, Kim DH, Jang YM, Kim HW, Lee WB, et al. Neurite outgrowth on 

nanocomposite scaffolds synthesized from plga and carboxylated carbon nanotubes. Adv. Eng. 

Mater.2010; 11:B261–B266. DOI 10.1002/adem.200900144 

[15] Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A.Organic 

functionalization of carbon nanotubes JACS, 2002; 124:760-761. DOI 10.1021/ja016954m 

[16] Ménard-Moyon C, Fabbro C, Prato M, Bianco A. One‐Pot Triple Functionalization of 

Carbon Nanotubes. Chemistry2011; 17:3222–3227. DOI 10.1002/chem.201003050 

[17] Price KB, Tour JM. Functionalization of single-walled carbon nanotubes“on water”. J. Am. 

Chem. Soc. 2006; 128:12899-12904. DOI 10.1021/ja063609u 

[18] Prato, M. Controlled nanotube reactions. Nature 2010; 465:172-173 

[19] Brunetti FG, Herrero MA, Munoz JdM, Diaz-Ortiz A, Alfonsi J, Meneghetti M, Prato M, 

Vazquez E. Microwave-induced multiple functionalization of carbon nanotubes. JACS 2008; 

130:8094-8100 

[20] Martel R, Schmidt T, Shea HR, Hertel T, Avouris P. Single- and multi-wall carbon nanotube 

field-effect transistors Appl. Phys. Lett. 1998; 73:2447-2449. DOI 10.1063/1.122477 

[21] Wang W, Vaughn, MW. Morphology and amine accessibility of (3-aminopropyl) 

triethoxysilane films on glass surfaces. Scanning, 2008; 30:65–77. DOI 10.1002/sca.20097 

[22] Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, MarkramHet al. 

Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in 

cultured brain circuits. J Neurosci. 2007; 27(26):6931-6936. DOI 10.1523/JNEUROSCI.1051-

07.2007 


