47 research outputs found

    Anti-inflammatory response of IL-4, IL-10 and TGF-beta in patients with systemic inflammatory response syndrome.

    Get PDF
    The systemic inflammatory response syndrome (SIRS) is an inflammatory process seen in association with a large number of clinical infective and non-infective conditions. The aim of this study was to investigate the role of anti-inflammatory cytokines such as interleukin-4 (IL-4), interleukin-10 (IL-10), and transforming growth factor-beta (TGF-beta). Serum levels of IL-4, IL-10 and TGF-beta were determined in 45 patients with SIRS: 38 patients had SIRS of infectious origin, whereas seven patients had non-infectious SIRS. Twenty healthy subjects were used as controls. Serum levels of IL-4, IL-10 and TGF-beta were determined by an immunoenzyme assay. A significant increase of IL-4 was observed in these patients at the time of diagnosis and 5 days later. In contrast, serum levels of IL-10 were not increased at the time of diagnosis, but a slight decrease was noted after 5 days. Serum levels of TGF-beta were not increased at time of diagnosis, and a slight increase was observed after 5 days. Serum levels of IL-4 were significantly higher in patients with infectious SIRS at the time of diagnosis, whereas no significant difference between infectious and non-infectious SIRS was noted for serum levels of IL-10 and TGF-beta at the time of diagnosis and 5 days later. During SIRS, serum levels of IL-4 were significantly increased with a significant correlation between IL-4 and mortality, and only levels of IL-4 were significantly increased in the SIRS caused by infectious stimuli

    Characterisation of Refined Marc Distillates with Alternative Oak Products Using Different Analytical Approaches

    Get PDF
    The use of oak barrel alternatives, including oak chips, oak staves and oak powder, is quite common in the production of spirits obtained from the distillation of vegetal fermented products such as grape pomace. This work explored the use of unconventional wood formats such as peeled and sliced wood. The use of poplar wood was also evaluated to verify its technological uses to produce aged spirits. To this aim, GC-MS analyses were carried out to obtain an aromatic characterisation of experimental distillates treated with these products. Moreover, the same spirits were studied for classification purposes using NMR, NIR and e-nose. A significant change in the original composition of grape pomace distillate due to sorption phenomena was observed; the intensity of this effect was greater for poplar wood. The release of aroma compounds from wood depended both on the toasting level and wood assortment. Higher levels of xylovolatiles, namely, whisky lactone, were measured in samples aged using sliced woods. Both the NIR and NMR analyses highlighted similarities among samples refined with oak tablets, differentiating them from the other wood types. Finally, E-nose seemed to be a promising alternative to spectroscopic methods both for the simplicity of sample preparation and method portability

    Rational positioning of 3D printed micro-bricks to realize high-fidelity, multi-functional soft-hard interfaces

    Full text link
    peer reviewedLiving organisms have developed design principles, such as functional gradients (FGs), to interface hard materials with soft ones (e.g., bone and tendon). Mimicking such design principles can address the challenges faced when developing engineered constructs with soft-hard interfaces. To date, implementing these FG design principles has been primarily performed by varying the ratio of the hard phase to that of the soft phase. Such design approaches, however, lead to inaccurate mechanical properties within the transition zone. That is due to the highly nonlinear relationship between the material distribution at the microscale and the macroscale mechanical properties. Here, we 3D print micro-bricks from either a soft or a hard phase and study the nonlinear relationship between their arrangements within the transition zone and the resulting macroscale properties. We carry out experiments at the micro- and macroscales as well as finite element simulations at both scales. Based on the obtained results, we develop a co-continuous power-law model relating the arrangement of the micro-bricks to the local mechanical properties of the micro-brick composites. We then use this model to rationally design FGs at the individual micro-brick level and create two types of biomimetic soft-hard constructs, including a specimen modeling bone-ligament junctions in the knee and another modeling the nucleus pulposus-annulus fibrosus interface in intervertebral discs. We show that the implemented FGs drastically enhance the stiffness, strength, and toughness of both types of specimens as compared to non-graded designs. Furthermore, we hypothesize that our soft-hard FGs regulate the behavior of murine preosteoblasts and primary human bone marrow-derived mesenchymal stromal cells (hBMSCc). We culture those cells to confirm the effects of soft-hard interfaces on cell morphology as well as on regulating the expression of focal adhesion kinase, subcellular localization, and YAP nuclear translocation of hBMSCs. Taken together, our results pave the way for the rational design of soft-hard interfaces at the micro-brick level and (biomedical) applications of such designs

    Effects of two AM fungi on phytoplasma infection in the model plant Chrysanthemum carinatum

    Get PDF
    Phytoplasmas are plant pathogenic bacteria, naturally transmitted by insects and confined in the phloem of the host plant, where they take up nutrients and eventually cause plant death. Their control is mainly based on insecticide treatments. The aim of this work was to study the effect of two AM fungi in modifying plant response to chrysanthemum yellows phytoplasma (CY) infection in chrysanthemum plants. Inoculation of Glomus intraradices BB-E and G. mosseae BEG12 reduced the damage caused by this plant pathogen in the aerial part of the plant, increased plant tolerance to the infection and reduced the severity of symptom expression, probably in a systemic way. Inoculation with G. mosseae did not alter CY multiplication and viability in young leaves, whilst the morphology of CY mature leaves was typical of senescent cells. Possible mechanisms involved are discussed
    corecore