95 research outputs found

    Operationalising Senian capability approach by modelling human development

    Get PDF
    Abstract: In this paper we model sustainable human development as intended in Sen’s capability approach in a system dynamic framework. Our purpose is to verify the variations over time of some achieved functionings, due to structural dynamics and to variations of the institutional setting and instrumental freedoms (IF Vortex). The model is composed of two sections. The ‘Left Side’ one points out the ‘demand’ for functionings in an ideal world situation. The real world one, on the ‘Right Side’ indicates the ‘supply’ of functionings that the socio-economic system is able to provide individuals with. The general model, specifically tailored for Italy, can be simulated over desired time horizons: for each time period, we carry out a comparison between ideal world and real world functionings. On the basis of their distances, the model simulates some responses of decision makers. These responses, in turn influenced by institutions and instrumental freedoms, ultimately affect the dynamics of real world functionings, i.e. of sustainable human development.Capabilities; Instrumental Freedoms; Sustainable Human Development

    Beat-to-beat finger photoplethysmography in atrial fibrillation patients undergoing electrical cardioversion

    Get PDF
    Atrial fibrillation (AF)-induced peripheral microcirculatory alterations have poorly been investigated. The present study aims to expand current knowledge through a beat-to-beat analysis of non-invasive finger photoplethysmography (PPG) in AF patients restoring sinus rhythm by electrical cardioversion (ECV). Continuous non-invasive arterial blood pressure and left middle finger PPG pulse oximetry waveform (POW) signals were continuously recorded before and after elective ECV of consecutive AF or atrial flutter (AFL) patients. The main metrics (mean, standard deviation, coefficient of variation), as well as a beat-to-beat analysis of the pulse pressure (PP) and POW beat-averaged value (aPOW), were computed to compare pre- and post-ECV phases. 53 patients (mean age 69 ± 8 years, 79% males) were enrolled; cardioversion was successful in restoring SR in 51 (96%) and signal post-processing was feasible in 46 (87%) patients. In front of a non-significant difference in mean PP (pre-ECV: 51.96 ± 13.25, post-ECV: 49.58 ± 10.41 mmHg; p = 0.45), mean aPOW significantly increased after SR restoration (pre-ECV: 0.39 ± 0.09, post-ECV: 0.44 ± 0.06 a.u.; p 95th percentile) and short (< 5th percentile) RR intervals were significantly more irregular in the pre-ECV phases for both PP and aPOW; however, aPOW signal suffered more fluctuations compared to PP (p < 0.001 in both phases). Present findings suggest that AF-related hemodynamic alterations are more manifest at the peripheral (aPOW) rather than at the upstream macrocirculatory level (PP). Restoring sinus rhythm increases mean peripheral microvascular perfusion and decreases variability of the microvascular hemodynamic signals. Future dedicated studies are required to determine if AF-induced peripheral microvascular alterations might relate to long-term prognostic effects

    Transcranial random noise stimulation does not improve behavioral and neurophysiological measures in patients with subacute Vegetative-Unresponsive Wakefulness State (VS-UWS)

    Get PDF
    Background: The absence of efficient treatments capable to promote central nervous system recovery in patients in vegetative state (VS) due to a severe acquired brain injury highlights the need of exploring alternative neuromodulatory treatments that can lead to neurobehavioral gains. Some encouraging preliminary observations suggest that transcranial direct current stimulation could be effective in disorders of consciousness (DoC) patients, especially when applied on the dorsolateral prefrontal cortex (DLPFC) in patients with minimally conscious state (MCS) but not in those with VS. Objective: The primary aim of the present study was to verify if the application of transcranial random noise stimulation (tRNS) on the DLPFC might favor improvements of consciousness recovery in subacute VS-UWS. Methods: Nine patients with DoC due to traumatic brain injury (n D 1), anoxia (n D 3), and vascular damage (n D 5), have undergone a randomized, double-blind, shamcontrolled, neuromodulatory trial with tRNS of bilateral DLPFC. All patients were in a post-acute phase and the DoC onset ranged from 30 days to 4 months. The diagnosis of DoC was based on internationally established criteria from the Multi-Society Task Force on PVS, and classified as VS or MCS using the JFK Coma Recovery Scale- Revised scores (CRS-R). We used CRS-R, Synek Scale, Ad-Hoc semi-quantitative scale and the Clinical Global Impression-Improvement scale to measure behavioral and electrophysiological changes during tRNS intervention. All patients were also treated with daily conventional rehabilitation treatment. Results: No significant differences emerged between active and sham groups regarding improvements of level of consciousness, as well as on electroencephalographic data. Only one patient showed emergence from VS-UWS, evolving from VS to MCS after the tRNS stimulation, at a distance of 3 weeks from the enrolment into the study. Conclusion: Repeated applications of tRNS of the DLPFC, even if applied in a subacute phase of VS-UWS state, did not modify behavioral and neurophysiological outcomes differently than sham stimulation

    A Quantitative Assessment of Cerebral Hemodynamic Perturbations Associated with Long R-R Intervals in Atrial Fibrillation: A Pilot-Case-Based Experience

    Get PDF
    Background and Objectives: Atrial fibrillation (AF) results in systemic hemodynamic perturbations which impact cerebral circulation, possibly contributing to the development of dementia. However, evidence documenting effects in cerebral perfusion is scarce. The aim of this study is to provide a quantitative characterization of the magnitude and time course of the cerebral hemodynamic response to the short hypotensive events associated with long R-R intervals, as detected by near-infrared spectroscopy (NIRS). Materials and Methods: Cerebral NIRS signals and arterial blood pressure were continuously recorded along with an electrocardiogram in twelve patients with AF undergoing elective electrical cardioversion (ECV). The top 0.5-2.5% longest R-R intervals during AF were identified in each patient and used as triggers to carry out the triggered averaging of hemodynamic signals. The average curves were then characterized in terms of the latency, magnitude, and duration of the observed effects, and the possible occurrence of an overshoot was also investigated. Results: The triggered averages revealed that long R-R intervals produced a significant drop in diastolic blood pressure (-13.7 ± 6.1 mmHg) associated with an immediate drop in cerebral blood volume (THI: -0.92 ± 0.46%, lasting 1.9 ± 0.8 s), followed by a longer-lasting decrease in cerebral oxygenation (TOI: -0.79 ± 0.37%, lasting 5.2 ± 0.9 s, p < 0.01). The recovery of the TOI was generally followed by an overshoot (+1.06 ± 0.12%). These effects were progressively attenuated in response to R-R intervals of a shorter duration. Conclusions: Long R-R intervals cause a detectable and consistent cerebral hemodynamic response which concerns both cerebral blood volume and oxygenation and outlasts the duration of the systemic perturbation. These effects are compatible with the activation of dynamic autoregulatory mechanisms in response to the hypotensive stimulus

    Increased beat-to-beat variability of cerebral microcirculatory perfusion during atrial fibrillation: a near-infrared spectroscopy study

    Get PDF
    Aims Atrial fibrillation (AFib) is associated with cognitive decline/dementia, independently from clinical strokes or transient ischaemic attacks (TIA). Recent in silico data suggested that AFib may induce transient critical haemodynamic events in the cerebral microcirculation. The aim of this study is to use non-invasive spatially resolved cerebral near-infrared spectroscopy (SRS-NIRS) to investigate in vivo beat-To-beat microcirculatory perfusion during AFib and after sinus rhythm (SR) restoration. Methods and results Cerebral SRS-NIRS with high-frequency sampling (20 Hz) and non-invasive systemic haemodynamic monitoring were recorded before and after elective electrical cardioversion (ECV) for AFib or atrial flutter (AFL). To assess beat-To-beat effects of the rhythm status, the frequency distribution of inter-beat differences in tissue haemoglobin index (THI), a proxy of microcirculatory cerebral perfusion, was compared before and after SR restoration. Fiftythree AFib/AFL patients (mean age 69 ± 8 years, 79% males) were ultimately enrolled. Cardioversion was successful in restoring SR in 51 (96%) patients. In front of a non-significant decrease in arterial blood pressure extreme events between pre-and post-ECV measurements, a significant decrease of both hypoperfusive and hyperperfusive/hypertensive microcirculatory events was observed after SR restoration (P<0.001 and P = 0.041, respectively). Conclusion The present is the first in vivo demonstration that SR restoration by ECV significantly reduces the burden of extreme single-beat haemodynamic events in cerebral microcirculation. Future studies are needed to assess whether SR maintenance might slow long-Term AFib-correlated cognitive decline/dementia

    Operationalising Senian capability approach by modelling human development

    Get PDF
    Abstract: In this paper we model sustainable human development as intended in Sen’s capability approach in a system dynamic framework. Our purpose is to verify the variations over time of some achieved functionings, due to structural dynamics and to variations of the institutional setting and instrumental freedoms (IF Vortex). The model is composed of two sections. The ‘Left Side’ one points out the ‘demand’ for functionings in an ideal world situation. The real world one, on the ‘Right Side’ indicates the ‘supply’ of functionings that the socio-economic system is able to provide individuals with. The general model, specifically tailored for Italy, can be simulated over desired time horizons: for each time period, we carry out a comparison between ideal world and real world functionings. On the basis of their distances, the model simulates some responses of decision makers. These responses, in turn influenced by institutions and instrumental freedoms, ultimately affect the dynamics of real world functionings, i.e. of sustainable human development

    Operationalising Senian capability approach by modelling human development

    Get PDF
    Abstract: In this paper we model sustainable human development as intended in Sen’s capability approach in a system dynamic framework. Our purpose is to verify the variations over time of some achieved functionings, due to structural dynamics and to variations of the institutional setting and instrumental freedoms (IF Vortex). The model is composed of two sections. The ‘Left Side’ one points out the ‘demand’ for functionings in an ideal world situation. The real world one, on the ‘Right Side’ indicates the ‘supply’ of functionings that the socio-economic system is able to provide individuals with. The general model, specifically tailored for Italy, can be simulated over desired time horizons: for each time period, we carry out a comparison between ideal world and real world functionings. On the basis of their distances, the model simulates some responses of decision makers. These responses, in turn influenced by institutions and instrumental freedoms, ultimately affect the dynamics of real world functionings, i.e. of sustainable human development

    Plasma miR-151-3p as a Candidate Diagnostic Biomarker for Head and Neck Cancer: A Cross-sectional Study within the INHANCE Consortium

    Full text link
    Background: Identification of screening tests for the detection of head and neck cancer (HNC) at an early stage is an important strategy to improving prognosis. Our objective was to identify plasma circulating miRNAs for the diagnosis of HNC (oral and laryngeal subsites), within a multicenter International Head and Neck Cancer Epidemiology consortium. Methods: A high-throughput screening phase with 754 miRNAs was performed in plasma samples of 88 cases and 88 controls, followed by a validation phase of the differentially expressed miRNAs, identified in the screening, in samples of 396 cases and 396 controls. Comparison of the fold changes (FC) was carried out using the Wilcoxon rank-sum test and the Dunn multiple comparison test. Results: We identified miR-151-3p (FC = 1.73, P = 0.007) as differentially expressed miRNAs in the screening and validation phase. The miR-151-3p was the only overexpressed miRNA in validation sample of patients with HNC with early stage at diagnosis (FC = 1.81, P = 0.008) and it was confirmed upregulated both in smoker early-stage cases (FC = 3.52, P = 0.024) and in nonsmoker early-stage cases (FC = 1.60, P = 0.025) compared with controls. Conclusions: We identified miR-151-3p as an early marker of HNC. This miRNA was the only upregulated in patients at early stages of the disease, independently of the smoking status. Impact: The prognosis for HNC is still poor. The discovery of a new diagnostic biomarker could lead to an earlier tumor discovery and therefore to an improvement in patient prognosis
    • …
    corecore