10 research outputs found
Characterization of ageing resistant transparent nanocrystalline yttria-stabilized zirconia implants.
The "Window to the Brain" is a transparent cranial implant under development, based on nanocrystalline yttria-stabilized zirconia (nc-YSZ) transparent ceramic material. Previous work has demonstrated the feasibility of this material to facilitate brain imaging over time, but the long-term stability of the material over decades in the body is unknown. In this study, the low-temperature degradation (LTD) of nc-YSZ of 3, 6, and 8 mol % yttria is compared before and after accelerated ageing treatments following ISO standards for assessing the ageing resistance of zirconia ceramics. After 100 hr of accelerated ageing (equivalent to many decades of ageing in the body), the samples do not show any signs of phase transformation to monoclinic by X-ray diffraction and micro-Raman spectroscopy. Moreover, the mechanical hardness of the samples did not decrease, and changes in optical transmittance from 500 to 1000 nm due to ageing treatments was minimal (below 3% for all samples), and unlikely to be due to phase transformation of surface crystals to monoclinic. These results indicate the nc-YSZ has excellent ageing resistance and can withstand long-term implantation conditions without exhibiting LTD
Recommended from our members
Enhanced near infrared optical access to the brain with a transparent cranial implant and scalp optical clearing.
We report on the enhanced optical transmittance in the NIR wavelength range (900 to 2400 nm) offered by a transparent Yttria-stabilized zirconia (YSZ) implant coupled with optical clearing agents (OCAs). The enhancement in optical access to the brain is evaluated upon comparing ex-vivo transmittance measurements of mice native skull and the YSZ cranial implant with scalp and OCAs. An increase in transmittance of up to 50% and attenuation lengths of up to 2.4 mm (i.e., a five-fold increase in light penetration) are obtained with the YSZ implant and the OCAs. The use of this ceramic implant and the biocompatible optical clearing agents offer attractive features for NIR optical techniques for brain theranostics
Temperature-Compensated Solution Concentration Measurements Using Photonic Crystal Fiber-Tip Sensors
We demonstrate fiber optic sensors with temperature compensation for the accurate measurement of ethanol concentration in aqueous solutions. The device consists of two photonic crystal (PhC) fiber-tip sensors: one measures the ethanol concentration via refractive index (RI) changes and the other one is isolated from the liquid for the independent measurement of temperature. The probes utilize an optimized PhC design providing a Lorentzian-like, polarization-independent response, enabling a very low imprecision (pm-level) in the wavelength determination. By combining the information from the two probes, it is possible to compensate for the effect that the temperature has on the concentration measurement, obtaining more accurate estimations of the ethanol concentration in a broad range of temperatures. We demonstrate the simultaneous and single-point measurements of temperature and ethanol concentration in water, with sensitivities of 19 pm/°C and ∼53 pm/%, in the ranges of 25 °C to 55 °C and 0 to (Formula presented.) (at 25 °C), respectively. Moreover, a maximum error of (Formula presented.) in the concentration measurement, with a standard deviation of ≤0.8%, was obtained in the entire temperature range after compensating for the effect of temperature. A limit of detection as low as (Formula presented.) was demonstrated for the concentration measurement in temperature-stable conditions.</p
Recommended from our members
Optical Access to Arteriovenous Cerebral Microcirculation Through a Transparent Cranial Implant.
Background and objectiveMicrocirculation plays a critical role in physiologic processes and several disease states. Laser speckle imaging (LSI) is a full-field, real-time imaging technique capable of mapping microvessel networks and providing relative flow velocity within the vessels. In this study, we demonstrate that LSI combine with multispectral reflectance imaging (MSRI), which allows for distinction between veins and arteries in the vascular flow maps produced by LSI. We apply this combined technique to mouse cerebral vascular network in vivo, comparing imaging through the skull, to the dura mater and brain directly through a craniectomy, and through a transparent cranial "Window to the Brain" (WttB) implant.Study design/materials and methodsThe WttB implant used in this study is made of a nanocrystalline Yttria-Stabilized-Zirconia ceramic. MSRI was conducted using white-light illumination and filtering the reflected light for 560, 570, 580, 590, 600, and 610 nm. LSI was conducted using an 810 nm continuous wave near-infrared laser with incident power of 100 mW, and the reflected speckle pattern was captured by a complementary metal-oxide-semiconductor (CMOS) camera.ResultsSeven vessel branches were analyzed and comparison was made between imaging through the skull, craniectomy, and WttB implant. Through the skull, MSRI did not detect any vessels, and LSI could not image microvessels. Imaging through the WttB implant, MSRI was able to identify veins versus arteries, and LSI was able to image microvessels with only slightly higher signal-to-noise ratio and lower sharpness than imaging the brain through a craniectomy.ConclusionsThis study demonstrates the ability to perform MSRI-LSI across a transparent cranial implant, to allow for cerebral vascular networks to be mapped, including microvessels. These images contain additional information such as vein-artery separation and relative blood flow velocities, information which is of value scientifically and medically. The WttB implant provides substantial improvements over imaging through the murine cranial bone, where microvessels are not visible and MSRI cannot be performed. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc
Recommended from our members
Evaluation of a transparent cranial implant as a permanent window for cerebral blood flow imaging.
Laser speckle imaging (LSI) of mouse cerebral blood flow was compared through a transparent nanocrystalline yttria-stabilized zirconia (nc-YSZ) cranial implant over time (at days 0, 14, and 28, n = 3 mice), and vs. LSI through native skull (at day 60, n = 1 mouse). The average sharpness of imaged vessels was found to remain stable, with relative change in sharpness under 7.69% ± 1.2% over 28 days. Through-implant images of vessels at day 60 appeared sharper and smaller on average, with microvessels clearly visible, compared to through-skull images where vessels appeared blurred and distorted. These results suggest that long-term imaging through this implant is feasible
Recommended from our members
Characterization of ageing resistant transparent nanocrystalline yttria-stabilized zirconia implants.
The "Window to the Brain" is a transparent cranial implant under development, based on nanocrystalline yttria-stabilized zirconia (nc-YSZ) transparent ceramic material. Previous work has demonstrated the feasibility of this material to facilitate brain imaging over time, but the long-term stability of the material over decades in the body is unknown. In this study, the low-temperature degradation (LTD) of nc-YSZ of 3, 6, and 8 mol % yttria is compared before and after accelerated ageing treatments following ISO standards for assessing the ageing resistance of zirconia ceramics. After 100 hr of accelerated ageing (equivalent to many decades of ageing in the body), the samples do not show any signs of phase transformation to monoclinic by X-ray diffraction and micro-Raman spectroscopy. Moreover, the mechanical hardness of the samples did not decrease, and changes in optical transmittance from 500 to 1000 nm due to ageing treatments was minimal (below 3% for all samples), and unlikely to be due to phase transformation of surface crystals to monoclinic. These results indicate the nc-YSZ has excellent ageing resistance and can withstand long-term implantation conditions without exhibiting LTD
Recommended from our members
Enhanced near infrared optical access to the brain with a transparent cranial implant and scalp optical clearing.
We report on the enhanced optical transmittance in the NIR wavelength range (900 to 2400 nm) offered by a transparent Yttria-stabilized zirconia (YSZ) implant coupled with optical clearing agents (OCAs). The enhancement in optical access to the brain is evaluated upon comparing ex-vivo transmittance measurements of mice native skull and the YSZ cranial implant with scalp and OCAs. An increase in transmittance of up to 50% and attenuation lengths of up to 2.4 mm (i.e., a five-fold increase in light penetration) are obtained with the YSZ implant and the OCAs. The use of this ceramic implant and the biocompatible optical clearing agents offer attractive features for NIR optical techniques for brain theranostics
Experimental and computational model approach to assess the photothermal effects in transparent nanocrystalline yttria stabilized zirconia cranial implant
[EN] Background and objective: In the last few years, we have been exploring the use of transparent nanocrystalline yttria-stabilized zirconia (nc-YSZ) ceramics as a biomedical transparent cranial implant, referred as the "Window to the Brain " (WttB). The WttB aims at providing chronical optical access to the brain for diagnostics and therapeutic procedures and it has shown to provide an effective means to obtain enhanced results from optical imaging techniques. The objective of this work is to explore the photothermal effects of the Wttb produced when it is irradiated by a laser source. Methods: We make experimental and computer models. The thermal effects of laser irradiation on the nc-YSZ samples were evaluated upon registering the induced temperature changes by means of thermal imaging. The computer models try to mimic the experimental models using a similar geometry, reproducing the physical situation by a couple thermal-optical problem and adjusting the main parameters from the experimental results. Results: Experimental and computational coincides in results: Temperatures at the bottom surface of the implant does not exceed those which produce thermal damage. The quantitative comparison between experimental and computational models show that differences in results are under a reasonable value of 5% and qualitatively we observe a similar behavior. The results provide optimum values for the thermal optical nc-YSZ parameters considering a linear and exponential relationship with temperature for the absorption coefficient: The thermal conductivity is k = 2.13 W/mmiddotK and the absorption coefficient alpha varies from 426 to 526 m(-1) with the linear relationship, and k = 2.04 W/mmiddotK and alpha is an element of [433,502] m(-1) with the exponential. The reflection coefficient is R = 19% in both cases. Conclusions: The temperatures achieved in the nc-YSZ during the laser irradiation are suitable for biomedical applications. The combination of experimental and computational models contributes to build a clinically oriented model with the thermal-optical parameters values stablished and to determine their influence in results. Specifically, the absorption coefficient of the nc-YSZ samples is the most influent parameter in the obtained temperatures. Moreover, this combination provides a method to evaluate the relevant thermal-optical parameters of nc-YSZ samples obtained with different manufacturing processes.This work was supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades under "Programa Estatal de I + D + I Orientada a los Retos de la Sociedad", Grant No. "RTI2018- 094357-B-C21". The WttB project is being funded by NSF through grants NSF-PIRE 1545852, NSF-EAGER 1547014 and by CONACYT (Mexico) through FORDECyT-PRONACES, Grant 246648. M.S.C.V. acknowledges support from "Beca Mixta, Grant 741249" (CONACYT, Mexico) .Cano-Velázquez, MS.; Bon Corbín, J.; Llamazares, M.; Camacho-López, S.; Aguilar, G.; Hernández-Cordero, J.; Trujillo Guillen, M. (2022). Experimental and computational model approach to assess the photothermal effects in transparent nanocrystalline yttria stabilized zirconia cranial implant. Computer Methods and Programs in Biomedicine. 221:1-11. https://doi.org/10.1016/j.cmpb.2022.10689611122
Recommended from our members
Chronic Brain Imaging Across a Transparent Nanocrystalline Yttria-Stabilized-Zirconia Cranial Implant.
Repeated non-diffuse optical imaging of the brain is difficult. This is due to the fact that the cranial bone is highly scattering and thus a strong optical barrier. Repeated craniotomies increase the risk of complications and may disrupt the biological systems being imaged. We previously introduced a potential solution in the form of a transparent ceramic cranial implant called the Window to the Brain (WttB) implant. This implant is made of nanocrystalline Yttria-Stabilized Zirconia (nc-YSZ), which possesses the requisite mechanical strength to serve as a permanent optical access window in human patients. In this present study, we demonstrate repeated brain imaging of n = 5 mice using both OCT and LSI across the WttB implant over 4 weeks. The main objectives are to determine if the WttB implant allows for chronic OCT imaging, and to shed further light on the question of whether optical access provided by the WttB implant remains stable over this duration in the body. The Window to the Brain implant allowed for stable repeated imaging of the mouse brain with Optical Coherence Tomography over 28 days, without loss of signal intensity. Repeated Laser Speckle Imaging was also possible over this timeframe, but signal to noise ratio and the sharpness of vessels in the images decreased with time. This can be partially explained by elevated blood flow during the first imaging session in response to trauma from the surgery, which was also detected by OCT flow imaging. These results are promising for long-term optical access through the WttB implant, making feasible chronic in vivo studies in multiple neurological models of brain disease
Recommended from our members
Chronic Brain Imaging Across a Transparent Nanocrystalline Yttria-Stabilized-Zirconia Cranial Implant.
Repeated non-diffuse optical imaging of the brain is difficult. This is due to the fact that the cranial bone is highly scattering and thus a strong optical barrier. Repeated craniotomies increase the risk of complications and may disrupt the biological systems being imaged. We previously introduced a potential solution in the form of a transparent ceramic cranial implant called the Window to the Brain (WttB) implant. This implant is made of nanocrystalline Yttria-Stabilized Zirconia (nc-YSZ), which possesses the requisite mechanical strength to serve as a permanent optical access window in human patients. In this present study, we demonstrate repeated brain imaging of n = 5 mice using both OCT and LSI across the WttB implant over 4 weeks. The main objectives are to determine if the WttB implant allows for chronic OCT imaging, and to shed further light on the question of whether optical access provided by the WttB implant remains stable over this duration in the body. The Window to the Brain implant allowed for stable repeated imaging of the mouse brain with Optical Coherence Tomography over 28 days, without loss of signal intensity. Repeated Laser Speckle Imaging was also possible over this timeframe, but signal to noise ratio and the sharpness of vessels in the images decreased with time. This can be partially explained by elevated blood flow during the first imaging session in response to trauma from the surgery, which was also detected by OCT flow imaging. These results are promising for long-term optical access through the WttB implant, making feasible chronic in vivo studies in multiple neurological models of brain disease