8,578 research outputs found

    Thorpe method applied to planetary boundary layer data

    Get PDF
    Turbulence affects the dynamics of atmospheric processes by enhancing the transport of mass, heat, humidity and pollutants. The global objective of our work is to analyze some direct turbulent descriptors which reflect the mixing processes in the atmospheric boundary layer (ABL). In this paper we present results related to the Thorpe displacements dT , the maximum Thorpe displacement (dT )max and the Thorpe scale LT , the Ozmidov scale and their time evolution in the ABL during a day cycle. A tethered balloon was used to obtain vertical profiles of the atmospheric physical magnitudes up to 1000m. We discuss the vertical and horizontal variability and how different descriptors are related to atmospheric mixing

    Graph Theory Data for Topological Quantum Chemistry

    Full text link
    Topological phases of noninteracting particles are distinguished by global properties of their band structure and eigenfunctions in momentum space. On the other hand, group theory as conventionally applied to solid-state physics focuses only on properties which are local (at high symmetry points, lines, and planes) in the Brillouin zone. To bridge this gap, we have previously [B. Bradlyn et al., Nature 547, 298--305 (2017)] mapped the problem of constructing global band structures out of local data to a graph construction problem. In this paper, we provide the explicit data and formulate the necessary algorithms to produce all topologically distinct graphs. Furthermore, we show how to apply these algorithms to certain "elementary" band structures highlighted in the aforementioned reference, and so identified and tabulated all orbital types and lattices that can give rise to topologically disconnected band structures. Finally, we show how to use the newly developed BANDREP program on the Bilbao Crystallographic Server to access the results of our computation.Comment: v1: 29 Pages, 13 Figures. Explains how to access the data presented in arXiv:1703.02050 v2: Accepted version. References updated, figures improve

    Filtered deterministic waves and analysis of the fractal dimension of the components of the wind velocity

    Get PDF
    The difficulty in developing models for waves in turbulent flows is a key problem in the analysis of the complexity of turbulence. We present a method to find and filter perturbations that are generated by the flow of deterministic waves from the power spectrum in the atmospheric boundary layer (ABL). The perturbation model proposed assumes that the amplitude and frequency of such waves decay with time exponentially. For illustrative purposes, we apply the technique to three time series of wind velocities obtained with a sonic anemometer. This analytical procedure allows us to filter waves of the proposed structure with a 99% significance level in the power spectrum. We have applied the same method to 540 such wind series, all painting similar results. We then compare the fractal dimension of the original series to those from which the waves have been removed. We find that the fractal dimension of the filtered waves is slightly less than that of the original series. Finally, we consider the fractal dimension of the studied series as a function of the length-scales and dissipation rate of kinetic energy per unit mass. Our results suggest an increase of fractal dimension with both length-scale and dissipation rate of kinetic energy

    Building Blocks of Topological Quantum Chemistry: Elementary Band Representations

    Full text link
    The link between chemical orbitals described by local degrees of freedom and band theory, which is defined in momentum space, was proposed by Zak several decades ago for spinless systems with and without time-reversal in his theory of "elementary" band representations. In Nature 547, 298-305 (2017), we introduced the generalization of this theory to the experimentally relevant situation of spin-orbit coupled systems with time-reversal symmetry and proved that all bands that do not transform as band representations are topological. Here, we give the full details of this construction. We prove that elementary band representations are either connected as bands in the Brillouin zone and are described by localized Wannier orbitals respecting the symmetries of the lattice (including time-reversal when applicable), or, if disconnected, describe topological insulators. We then show how to generate a band representation from a particular Wyckoff position and determine which Wyckoff positions generate elementary band representations for all space groups. This theory applies to spinful and spinless systems, in all dimensions, with and without time reversal. We introduce a homotopic notion of equivalence and show that it results in a finer classification of topological phases than approaches based only on the symmetry of wavefunctions at special points in the Brillouin zone. Utilizing a mapping of the band connectivity into a graph theory problem, which we introduced in Nature 547, 298-305 (2017), we show in companion papers which Wyckoff positions can generate disconnected elementary band representations, furnishing a natural avenue for a systematic materials search.Comment: 15+9 pages, 4 figures; v2: minor corrections; v3: updated references (published version

    Band Connectivity for Topological Quantum Chemistry: Band Structures As A Graph Theory Problem

    Full text link
    The conventional theory of solids is well suited to describing band structures locally near isolated points in momentum space, but struggles to capture the full, global picture necessary for understanding topological phenomena. In part of a recent paper [B. Bradlyn et al., Nature 547, 298 (2017)], we have introduced the way to overcome this difficulty by formulating the problem of sewing together many disconnected local "k-dot-p" band structures across the Brillouin zone in terms of graph theory. In the current manuscript we give the details of our full theoretical construction. We show that crystal symmetries strongly constrain the allowed connectivities of energy bands, and we employ graph-theoretic techniques such as graph connectivity to enumerate all the solutions to these constraints. The tools of graph theory allow us to identify disconnected groups of bands in these solutions, and so identify topologically distinct insulating phases.Comment: 19 pages. Companion paper to arXiv:1703.02050 and arXiv:1706.08529 v2: Accepted version, minor typos corrected and references added. Now 19+epsilon page

    Topological quantum chemistry

    Full text link
    The past decade's apparent success in predicting and experimentally discovering distinct classes of topological insulators (TIs) and semimetals masks a fundamental shortcoming: out of 200,000 stoichiometric compounds extant in material databases, only several hundred of them are topologically nontrivial. Are TIs that esoteric, or does this reflect a fundamental problem with the current piecemeal approach to finding them? To address this, we propose a new and complete electronic band theory that highlights the link between topology and local chemical bonding, and combines this with the conventional band theory of electrons. Topological Quantum Chemistry is a description of the universal global properties of all possible band structures and materials, comprised of a graph theoretical description of momentum space and a dual group theoretical description in real space. We classify the possible band structures for all 230 crystal symmetry groups that arise from local atomic orbitals, and show which are topologically nontrivial. We show how our topological band theory sheds new light on known TIs, and demonstrate the power of our method to predict a plethora of new TIs.Comment: v1: 8 pages + 40 pages supplemenetary material. Previously submitted v2: ~ Published version. 11 pages + 79 pages supplementary material. Descriptions of the data used in this paper can be found in arXiv:1706.08529 and arXiv:1706.09272. All data can be accessed via the Bilbao Crystallographic Server (http://cryst.ehu.es). Two additional papers elaborating on the general theory currently in pre

    Package ‘SixSigma’

    Get PDF
    This package contains functions and utilities to performStatistical Analyses in the Six Sigma way. Through the DMAICcycle (Define, Measure, Analyze, Improve, Control), you can manage several Quality Management studies: Gage R&R, CapabilityAnalysis, Control Charts, Loss Function Analysis, etc. Dataframes used in the book ‘‘Six Sigma with R’’ (Springer, 2012) are also included in the package

    An experimental model of mixing processes generated by an array of top-heavy turbulent plumes

    Get PDF
    The mixing process of two fluids of unequal density generated by the evolution of an array of forced turbulent plumes is studied in the laboratory. The corresponding qualitative conclusions and the quantitative results based on measures of the density field and of the height of the fluid layers are described. The partial mixing process is characterized and analyzed, and the conclusions of this analysis are related to the mixing efficiency and the volume of the final mixed layer as functions of the Atwood number, which ranges from 0.010 to 0.134. An exponential fit is used to evaluate the mixing efficiency versus the Atwood showing the role of initial conditions on mixing efficiency variability

    Anaerobic Thermophilic Colonization of Porous Support

    Get PDF
    Biofilm development in an open-pore sintered glass material (SIRAN) was studied using a laboratory-scale anaerobic fixed-film bioreactor under thermophilic conditions. The startup and performance of that bioreactor, operating on distillery waste water feed (vinasses), were also studied. Results obtained indicated that stepped organic loading during initial bioreactor start-up reduced the periods of adaptation in the colonization process and micro-organism attachment and biofilm formation was accelerated by the surface characteristics of the carrier. The results obtained by operating with stepped organic loading (& = 2.0 kg m–3 d–1 COD) over a period of 70 days suggest that a stable operation of the process (90% COD removal) and high density of biomass immobilized on the support (20 kgVSatt per m3 SIRAN) is achieved. Epifluorescence microscopy demonstrated that, initially, attached growth was developed in crevices, where biomass was protected from shear forces and, finally, SIRAN was completely covered and biofilm developed on the entire SIRAN particles
    • 

    corecore