6,624 research outputs found
The Low CO Content of the Extremely Metal Poor Galaxy I Zw 18
We present sensitive molecular line observations of the metal-poor blue
compact dwarf I Zw 18 obtained with the IRAM Plateau de Bure interferometer.
These data constrain the CO J=1-0 luminosity within our 300 pc (FWHM) beam to
be L_CO < 1 \times 10^5 K km s^-1 pc^2 (I_CO < 1 K km s^-1), an order of
magnitude lower than previous limits. Although I Zw 18 is starbursting, it has
a CO luminosity similar to or less than nearby low-mass irregulars (e.g. NGC
1569, the SMC, and NGC 6822). There is less CO in I Zw 18 relative to its
B-band luminosity, HI mass, or star formation rate than in spiral or dwarf
starburst galaxies (including the nearby dwarf starburst IC 10). Comparing the
star formation rate to our CO upper limit reveals that unless molecular gas
forms stars much more efficiently in I Zw 18 than in our own galaxy, it must
have a very low CO-to-H_2 ratio, \sim 10^-2 times the Galactic value. We detect
3mm continuum emission, presumably due to thermal dust and free-free emission,
towards the radio peak.Comment: 5 pages in emulateapj style, accepted by the Astrophysical Journa
AGC 226067: A possible interacting low-mass system
We present Arecibo, GBT, VLA and WIYN/pODI observations of the ALFALFA source
AGC 226067. Originally identified as an ultra-compact high velocity cloud and
candidate Local Group galaxy, AGC 226067 is spatially and kinematically
coincident with the Virgo cluster, and the identification by multiple groups of
an optical counterpart with no resolved stars supports the interpretation that
this systems lies at the Virgo distance (D=17 Mpc). The combined observations
reveal that the system consists of multiple components: a central HI source
associated with the optical counterpart (AGC 226067), a smaller HI-only
component (AGC 229490), a second optical component (AGC 229491), and extended
low surface brightness HI. Only ~1/4 of the single-dish HI emission is
associated with AGC 226067; as a result, we find M_HI/L_g ~ 6 Msun/Lsun, which
is lower than previous work. At D=17 Mpc, AGC 226067 has an HI mass of 1.5 x
10^7 Msun and L_g = 2.4 x 10^6 Lsun, AGC 229490 (the HI-only component) has
M_HI = 3.6 x 10^6 Msun, and AGC 229491 (the second optical component) has L_g =
3.6 x 10^5 Lsun. The nature of this system of three sources is uncertain: AGC
226067 and AGC 229490 may be connected by an HI bridge, and AGC 229490 and AGC
229491 are separated by only 0.5'. The current data do not resolve the HI in
AGC 229490 and its origin is unclear. We discuss possible scenarios for this
system of objects: an interacting system of dwarf galaxies, accretion of
material onto AGC 226067, or stripping of material from AGC 226067.Comment: Accepted for publication in A&A. 6 pages, 4 figure
Contrasting local and long-range-transported warm ice-nucleating particles during an atmospheric river in coastal California, USA
Ice-nucleating particles (INPs) have been found to influence the amount, phase and efficiency of precipitation from winter storms, including atmospheric rivers.Warm INPs, those that initiate freezing at temperatures warmer than -10°C, are thought to be particularly impactful because they can create primary ice in mixed-phase clouds, enhancing precipitation efficiency. The dominant sources of warm INPs during atmospheric rivers, the role of meteorology in modulating transport and injection of warm INPs into atmospheric river clouds, and the impact of warm INPs on mixed-phase cloud properties are not well-understood. In this case study, time-resolved precipitation samples were collected during an atmospheric river in northern California, USA, during winter 2016. Precipitation samples were collected at two sites, one coastal and one inland, which are separated by about 35 km. The sites are sufficiently close that air mass sources during this storm were almost identical, but the inland site was exposed to terrestrial sources of warm INPs while the coastal site was not. Warm INPs were more numerous in precipitation at the inland site by an order of magnitude. Using FLEXPART (FLEXible PARTicle dispersion model) dispersion modeling and radar-derived cloud vertical structure, we detected influence from terrestrial INP sources at the inland site but did not find clear evidence of marine warm INPs at either site.We episodically detected warm INPs from long-range-transported sources at both sites. By extending the FLEXPART modeling using a meteorological reanalysis, we demonstrate that long-range-transported warm INPs were observed only when the upper tropospheric jet provided transport to cloud tops. Using radar-derived hydrometeor classifications, we demonstrate that hydrometeors over the terrestrially influenced inland site were more likely to be in the ice phase for cloud temperatures between 0 and -10°C. We thus conclude that terrestrial and long-rangetransported aerosol were important sources of warm INPs during this atmospheric river. Meteorological details such as transport mechanism and cloud structure were important in determining (i) warm INP source and injection temperature and (ii) ultimately the impact of warm INPs on mixed-phase cloud properties
A Unified Near Infrared Spectral Classification Scheme for T Dwarfs
A revised near infrared classification scheme for T dwarfs is presented,
based on and superseding prior schemes developed by Burgasser et al. and
Geballe et al., and defined following the precepts of the MK Process. Drawing
from two large spectroscopic libraries of T dwarfs identified largely in the
Sloan Digital Sky Survey and the Two Micron All Sky Survey, nine primary
spectral standards and five alternate standards spanning spectral types T0 to
T8 are identified that match criteria of spectral character, brightness,
absence of a resolved companion and accessibility from both northern and
southern hemispheres. The classification of T dwarfs is formally made by the
direct comparison of near infrared spectral data of equivalent resolution to
the spectra of these standards. Alternately, we have redefined five key
spectral indices measuring the strengths of the major HO and CH bands
in the 1-2.5 micron region that may be used as a proxy to direct spectral
comparison. Two methods of determining T spectral type using these indices are
outlined and yield equivalent results. These classifications are also
equivalent to those from prior schemes, implying that no revision of existing
spectral type trends is required. The one-dimensional scheme presented here
provides a first step toward the observational characterization of the lowest
luminosity brown dwarfs currently known. Future extensions to incorporate
spectral variations arising from differences in photospheric dust content,
gravity and metallicity are briefly discussed. A compendium of all currently
known T dwarfs with updated classifications is presented.Comment: 52 pages, 11 figures; accepted for publication to Ap
Selectively Electron-Transparent Microstamping Toward Concurrent Digital Image Correlation and High-Angular Resolution Electron Backscatter Diffraction (EBSD) Analysis
High resolution digital image correlation (HRDIC) and high resolution electron backscatter diffraction (HREBSD) provide valuable and complementary data concerning local deformation at the microscale. However, standard surface preparation techniques are mutually exclusive, which makes combining these techniques in situ impossible. This paper introduces a new method of applying surface patterning for HRDIC, namely a urethane rubber microstamp, that provides a pattern with enough contrast for HRDIC at low accelerating voltages, but is still virtually transparent at the higher voltages necessary for HREBSD and conventional electron backscatter diffraction (EBSD) analysis. Furthermore, microstamping is inexpensive and repeatable, and is more amenable to application of patterns to complex surface geometries and larger surface areas than other patterning techniques
Constraining Disk Parameters of Be Stars using Narrowband H-alpha Interferometry with the NPOI
Interferometric observations of two well-known Be stars, gamma Cas and phi
Per, were collected and analyzed to determine the spatial characteristics of
their circumstellar regions. The observations were obtained using the Navy
Prototype Optical Interferometer equipped with custom-made narrowband filters.
The filters isolate the H-alpha emission line from the nearby continuum
radiation, which results in an increased contrast between the interferometric
signature due to the H-alpha-emitting circumstellar region and the central
star. Because the narrowband filters do not significantly attenuate the
continuum radiation at wavelengths 50 nm or more away from the line, the
interferometric signal in the H-alpha channel is calibrated with respect to the
continuum channels. The observations used in this study represent the highest
spatial resolution measurements of the H-alpha-emitting regions of Be stars
obtained to date. These observations allow us to demonstrate for the first time
that the intensity distribution in the circumstellar region of a Be star cannot
be represented by uniform disk or ring-like structures, whereas a Gaussian
intensity distribution appears to be fully consistent with our observations.Comment: 23 pages, 14 figures, accepted for publication in A
Effects of Next-Nearest-Neighbor Repulsion on One-Dimensional Quarter-Filled Electron Systems
We examine effects of the next-nearest-neighbor repulsion on electronic
states of a one-dimensional interacting electron system which consists of
quarter-filled band and interactions of on-site and nearest-neighbor repulsion.
We derive the effective Hamiltonian for the electrons around wave number \pm
\kf (\kf: Fermi wave number) and apply the renormalization group method to
the bosonized Hamiltonian. It is shown that the next-nearest-neighbor repulsion
makes 4\kf-charge ordering unstable and suppresses the spin fluctuation.
Further the excitation gaps and spin susceptibility are also evaluated.Comment: 19 pages, 8 figures, submitted to J. Phys. Soc. Jp
Blue Straggler Stars: Early Observations that Failed to Solve the Problem
In this chapter, I describe early ideas on blue stragglers, and various
observations (some published, some not) that promised but failed to resolve the
question of their origin. I review the data and ideas that were circulating
from Allan Sandage's original discovery in 1953 of "anomalous blue stars" in
the globular cluster M3, up until about 1992, when what seems to have been the
only previous meeting devoted to Blue Straggler Stars (BSSs) was held at the
Space Telescope Science Institute.Comment: Chapter 2, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G.
Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe
- …