7,677 research outputs found

    Mechanism of CDW-SDW Transition in One Dimension

    Full text link
    The phase transition between charge- and spin-density-wave (CDW, SDW) phases is studied in the one-dimensional extended Hubbard model at half-filling. We discuss whether the transition can be described by the Gaussian and the spin-gap transitions under charge-spin separation, or by a direct CDW-SDW transition. We determine these phase boundaries by level crossings of excitation spectra which are identified according to discrete symmetries of wave functions. We conclude that the Gaussian and the spin-gap transitions take place separately from weak- to intermediate-coupling region. This means that the third phase exists between the CDW and the SDW states. Our results are also consistent with those of the strong-coupling perturbative expansion and of the direct evaluation of order parameters.Comment: 5 pages(REVTeX), 5 figures(EPS), 1 table, also available from http://wwwsoc.nacsis.ac.jp/jps/jpsj/1999/p68a/p68a42/p68a42h/p68a42h.htm

    The S2 VLBI Correlator: A Correlator for Space VLBI and Geodetic Signal Processing

    Get PDF
    We describe the design of a correlator system for ground and space-based VLBI. The correlator contains unique signal processing functions: flexible LO frequency switching for bandwidth synthesis; 1 ms dump intervals, multi-rate digital signal-processing techniques to allow correlation of signals at different sample rates; and a digital filter for very high resolution cross-power spectra. It also includes autocorrelation, tone extraction, pulsar gating, signal-statistics accumulation.Comment: 44 pages, 13 figure

    A New Giant Branch Clump Structure In the Large Magellanic Cloud

    Get PDF
    We present Washington C, T1 CCD photometry of 21 fields located in the northern part of the Large Magellanic Cloud (LMC), and spread over a region of more than 2.52 degrees approximately 6 degrees from the bar. The surveyed areas were chosen on the basis of their proximity to SL 388 and SL 509, whose fields showed the presence of a secondary giant clump, observationally detected by Bica et al. (1998, AJ, 116, 723). From the collected data we found that most of the observed field CMDs do not show a separate secondary clump, but rather a continuous vertical structure (VS), which is clearly seen for the first time. Its position and size are nearly the same throughout the surveyed regions: it lies below the Red Giant Clump (RGC) and extends from the bottom of the RGC to approximately 0.45 mag fainter, spanning the bluest color range of the RGC. The more numerous the VS stars in a field, the larger the number of LMC giants in the same zone. Our analysis demonstrate that VS stars belong to the LMC and are most likely the consequence of some kind of evolutionary process in the LMC, particularly in those LMC regions with a noticeable large giant population. Our results suggest that in order to trigger the formation of VS stars, there should be other conditions besides the appropriate age, metallicity, and the necessary red giant star density. Indeed, stars satisfying the requisites mentioned above are commonly found throughout the LMC, but the VS phenomenon is only clearly seen in some isolated regions. Finally, the fact that clump stars have an intrinsic luminosity dispersion further constrains the use of the clump magnitude as a reliable distance indicator.Comment: 25 pages, 9 figures, 3 tables; to be published in AJ, Dec. issu

    Stochastic Feedback and the Regulation of Biological Rhythms

    Full text link
    We propose a general approach to the question of how biological rhythms spontaneously self-regulate, based on the concept of ``stochastic feedback''. We illustrate this approach by considering the neuroautonomic regulation of the heart rate. The model generates complex dynamics and successfully accounts for key characteristics of cardiac variability, including the 1/f1/f power spectrum, the functional form and scaling of the distribution of variations, and correlations in the Fourier phases. Our results suggest that in healthy systems the control mechanisms operate to drive the system away from extreme values while not allowing it to settle down to a constant output.Comment: 15 pages, latex2e using rotate and epsf, with 4 ps figures. Submitted to PR

    The Nature of the Density Clump in the Fornax Dwarf Spheroidal Galaxy

    Full text link
    We have imaged the recently discovered stellar overdensity located approximately one core radius from the center of the Fornax dwarf spheroidal galaxy using the Magellan Clay 6.5m telescope with the Magellan Instant Camera (MagIC). Superb seeing conditions allowed us to probe the stellar populations of this overdensity and of a control field within Fornax to a limiting magnitude of R=26. The color-magnitude diagram of the overdensity field is virtually identical to that of the control field with the exception of the presence of a population arising from a very short (less than 300 Myr in duration) burst of star formation 1.4 Gyr ago. Coleman et al. have argued that this overdensity might be related to a shell structure in Fornax that was created when Fornax captured a smaller galaxy. Our results are consistent with this model, but we argue that the metallicity of this young component favors a scenario in which the gas was part of Fornax itself.Comment: 24 pages including 8 figures and 3 tables. Accepted by Astronomical Journa

    Early Prediction of Massive Transfusion for Patients With Traumatic Hemorrhage: Development of a Multivariable Machine Learning Model

    Get PDF
    OBJECTIVE: Develop a novel machine learning (ML) model to rapidly identify trauma patients with severe hemorrhage at risk of early mortality. BACKGROUND: The critical administration threshold (CAT, 3 or more units of red blood cells in a 60-minute period) indicates severe hemorrhage and predicts mortality, whereas early identification of such patients improves survival. METHODS: Patients from the PRospective, Observational, Multicenter, Major Trauma Transfusion and Pragmatic, Randomized Optimal Platelet, and Plasma Ratio studies were identified as either CAT+ or CAT-. Candidate variables were separated into 4 tiers based on the anticipated time of availability during the patient\u27s assessment. ML models were created with the stepwise addition of variables and compared with the baseline performance of the assessment of blood consumption (ABC) score for CAT+ prediction using a cross-validated training set and a hold-out validation test set. RESULTS: Of 1245 PRospective, Observational, Multicenter, Major Trauma Transfusion and 680 Pragmatic, Randomized Optimal Platelet and Plasma Ratio study patients, 1312 were included in this analysis, including 862 CAT+ and 450 CAT-. A CatBoost gradient-boosted decision tree model performed best. Using only variables available prehospital or on initial assessment (Tier 1), the ML model performed superior to the ABC score in predicting CAT+ patients [area under the receiver-operator curve (AUC = 0.71 vs 0.62)]. Model discrimination increased with the addition of Tier 2 (AUC = 0.75), Tier 3 (AUC = 0.77), and Tier 4 (AUC = 0.81) variables. CONCLUSIONS: A dynamic ML model reliably identified CAT+ trauma patients with data available within minutes of trauma center arrival, and the quality of the prediction improved as more patient-level data became available. Such an approach can optimize the accuracy and timeliness of massive transfusion protocol activation

    Proof of Bose-Einstein Condensation for Interacting Gases with a One-Particle Spectral Gap

    Full text link
    Using a specially tuned mean-field Bose gas as a reference system, we establish a positive lower bound on the condensate density for continuous Bose systems with superstable two-body interactions and a finite gap in the one-particle excitations spectrum, i.e. we prove for the first time standard homogeneous Bose-Einstein condensation for such interacting systems
    corecore