46 research outputs found

    Responses of two marine top predators to an offshore wind farm

    Get PDF
    Quantifying the likely effects of offshore wind farms on wildlife is fundamental before permission for development can be granted by any Determining Authority. The effects on marine top predators from displacement from important habitat are key concerns during offshore wind farm construction and operation. In this respect, we present evidence for no significant displacement from a UK offshore wind farm for two broadly distributed species of conservation concern: common guillemot (Uria aalge) and harbor porpoise (Phocoena phocoena). Data were collected during boat-based line transect surveys across a 360 km2 study area that included the Robin Rigg offshore wind farm. Surveys were conducted over 10 years across the preconstruction, construction, and operational phases of the development. Changes in guillemot and harbor porpoise abundance and distribution in response to offshore wind farm construction and operation were estimated using generalized mixed models to test for evidence of displacement. Both common guillemot and harbor porpoise were present across the Robin Rigg study area throughout all three development phases. There was a significant reduction in relative harbor porpoise abundance both within and surrounding the Robin Rigg offshore wind farm during construction, but no significant difference was detected between the preconstruction and operational phases. Relative common guillemot abundance remained similar within the Robin Rigg offshore wind farm across all development phases. Offshore wind farms have the potential to negatively affect wildlife, but further evidence regarding the magnitude of effect is needed. The empirical data presented here for two marine top predators provide a valuable addition to the evidence base, allowing future decision making to be improved by reducing the uncertainty of displacement effects and increasing the accuracy of impact assessments

    A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self-Assembly

    Get PDF
    Recently, polymerization-induced self-assembly (PISA) has become widely recognized as a robust and efficient route to produce block copolymer nanoparticles of controlled size, morphology, and surface chemistry. Several reviews of this field have been published since 2012, but a substantial number of new papers have been published in the last three years. In this Perspective, we provide a critical appraisal of the various advantages offered by this approach, while also pointing out some of its current drawbacks. Promising future research directions as well as remaining technical challenges and unresolved problems are briefly highlighted

    Spin-echo small-angle neutron scattering (SESANS) studies of diblock copolymer nanoparticles

    Get PDF
    Poly(glycerol monomethacrylate)–poly(benzyl methacrylate) (PGMA–PBzMA) diblock copolymer nanoparticles were synthesized via polymerization-induced self-assembly (PISA) using reversible addition–fragmentation chain-transfer (RAFT) aqueous emulsion polymerization in D2O. Such PISA syntheses produce sterically-stabilized nanoparticles in situ and can be performed at relatively high copolymer concentrations (up to 50 wt%). This PGMA–PBzMA formulation is known to form only spherical nanoparticles in water using aqueous emulsion polymerization (Macromolecules, 2014, 47, 5613–5623), which makes it an ideal model system for exploring new characterization methods. The polymer micelles were characterized using small-angle X-ray scattering (SAXS) and a recently developed form of neutron scattering, spin-echo small-angle neutron scattering (SESANS). As far as we are aware, this is the first report of a study of polymer micelles by SESANS, and the data agree well with reciprocal-space scattering. Using this technique enables characterization of the concentrated, as synthesized dispersions directly without dilution, and this will provide a method to study self-assembled polymer systems that have concentration dependent morphologies, while still maintaining the advantages of scattering techniques

    Influence of an ionic comonomer on polymerization-induced self-assembly of diblock copolymers in non-polar media

    Get PDF
    A series of poly(stearyl methacrylate)-poly(benzyl methacrylate) (PSMA-PBzMA) diblock copolymer nano-objects has been synthesized via reversible addition-fragmentation chain-transfer (RAFT) dispersion polymerization in n-dodecane at 20 wt%. This polymerization-induced self-assembly (PISA) formulation was modified by the incorporation of an anionic monomer, tetradodecylammonium 3-sulfopropyl methacrylate ([NDod 4] +[SPMA] -) into the oil-insoluble PBzMA block. According to the literature (M. J. Derry, et al., Chem. Sci., 2016, 7, 5078-5090), PSMA 18-PBzMA diblock copolymers only form spheres using this formulation for any core degree of polymerization. Unexpectedly, incorporating just a small fraction (<6 mol%) of [NDod 4] +[SPMA] - comonomer into the structure-directing block resulted in the formation of non-spherical diblock copolymer nano-objects, including pure worm-like and vesicular morphologies. However, only spherical micelles could be formed using a longer PSMA 34 stabilizer. These diblock copolymer nano-objects were characterized by transmission electron microscopy, small-angle X-ray scattering, and dynamic light scattering. The bulky nature of the ionic comonomer appears to make it possible to avoid the kinetically-trapped sphere morphology. This study reveals a new approach for tuning the morphology of diblock copolymer nano-objects in non-polar media

    Ionic and Nonspherical Polymer Nanoparticles in Nonpolar Solvents

    Get PDF
    A series of ionic diblock copolymer nanoparticles was prepared in a typical nonpolar solvent (n-dodecane) via polymerization-induced self-assembly (PISA). A single cationic repeat unit was incorporated into the poly(stearyl methacrylate) (PSMA) stabilizer of otherwise uncharged poly(stearyl methacrylate)–poly(benzyl methacrylate) (PSMA–PBzMA) diblock copolymer nanoparticles. By using short PSMA stabilizer blocks, it was possible to obtain nanoparticles with the range of morphologies expected (spheres, worms, and vesicles). For nanoparticles where all stabilizer chains possessed an ionic group, higher-order morphologies were obtained at lower PBzMA degrees of polymerization than corresponding uncharged particles, and the particles were electrophoretic. For nanoparticles where only a fraction of the stabilizer chains contained an ionic group, higher-order morphologies were obtained at precisely the same PBzMA degrees of polymerization, and the electrophoretic response was greater than when the shell was fully ionic. These particles with a partially ionic shell are a fascinating system, providing morphologies that can be predicted from the existing knowledge of the diblock copolymer morphology yet with the highest possible electrophoretic mobility

    The pill questionnaire in a nondemented Parkinson's disease population

    Full text link
    We assessed the Pill Questionnaire as a screen for mild cognitive impairment in nondemented Parkinson's disease patients. The relationship between ability to remember medications for Parkinson's disease in the Pill Questionnaire, mild cognitive impairment, and deficits on neuropsychological tests performed 2–3 weeks later blind to Pill Questionnaire results was assessed in movement disorders clinic patients. In 109 subjects, inaccurate medication reporting on the Pill Questionnaire was associated with lower scores on the Montreal Cognitive Assessment, Scales for Outcomes in Parkinson's Disease–Cognition and with deficits in memory, attention, executive function‐inhibitory control, processing speed, visuospatial function, and language. Inaccurate medication reporting was also associated with an adjusted odds ratio of 2.4 (95% CI, 0.91–5.88; P = .06) for mild cognitive impairment, with a specificity of 80% and sensitivity of 41%. The Pill Questionnaire is neither sensitive nor specific enough to be used as the sole screening or diagnostic tool for mild cognitive impairment. However, inaccurate medication reporting is associated with deficits spanning many cognitive domains and should alert a clinician to a higher likelihood of cognitive impairment. © 2012 Movement Disorder SocietyPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/93736/1/25124_ftp.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/93736/2/MDS_25124_sm_SuppTables.pd

    Detecting and Characterizing Mg II absorption in DESI Survey Validation Quasar Spectra

    Full text link
    In this paper we will present findings on the detection of Magnesium II (MgII, lambda = 2796 {\AA}, 2803 {\AA}) absorption systems observed in data from the Early Data Release (EDR) of the Dark Energy Spectroscopic Instrument (DESI). DESI is projected to obtain spectroscopy of approximately 3 million quasars (QSOs), of which over 99% are anticipated to be found at redshifts greater than z < 0.3, such that DESI would be able to observe an associated or intervening Mg II absorber illuminated by the background QSO. We have developed an autonomous supplementary spectral pipeline that detects such systems through an initial line-fitting process and then confirms line properties using a Markov Chain Monte Carlo (MCMC) sampler. Based upon both a visual inspection and the reanalysis of coadded observations, we estimate this sample of absorption systems to have a completeness of 82.56% and purity of 99.08%. As the spectra in which Mg II systems are detected are the result of coadding multiple observations, we can determine the sensitivity, and therefore completeness, of the sample by searching for known Mg II systems in coadded data with fewer observations (and therefore lower signal-to-noise). From a parent catalog containing 83,207 quasars, we detect a total of 23,921 Mg II absorption systems following a series of quality cuts. Extrapolating from this occurrence rate of 28.75% implies a catalog at the completion of the five-year DESI survey that contains over eight hundred thousand Mg II absorbers. The cataloging of these systems will enable significant further research as they carry information regarding circumgalactic medium (CGM) environments, the distribution of intervening galaxies, and the growth of metallicity across the redshift range 0.3 < z < 2.5.Comment: 12 pages, 7 figure

    Transcriptomic comparison of the retina in two mouse models of diabetes

    Get PDF
    Mouse models of type I diabetes offer the potential to combine genetic approaches with other pharmacological or physiological manipulations to investigate the pathophysiology and treatment of diabetic retinopathy. Type I diabetes is induced in mice through chemical toxins or can arise spontaneously from genetic mutations. Both models are associated with retinal vascular and neuronal changes. Retinal transcriptomic responses in C57BL/6J mice treated with streptozotocin and Ins2Akita/+ were compared after 3 months of hyperglycemia. Specific gene expression changes suggest a neurovascular inflammatory response in diabetic retinopathy. Genes common to the two models may represent the response of the retina to hyperglycemia, while changes unique to each model may represent time-dependent disease progression differences in the various models. Further investigation of the commonalities and differences between mouse models of type I diabetes may define cause and effect events in early diabetic retinopathy disease progression

    Multi-Modal Proteomic Analysis of Retinal Protein Expression Alterations in a Rat Model of Diabetic Retinopathy

    Get PDF
    As a leading cause of adult blindness, diabetic retinopathy is a prevalent and profound complication of diabetes. We have previously reported duration-dependent changes in retinal vascular permeability, apoptosis, and mRNA expression with diabetes in a rat model system. The aim of this study was to identify retinal proteomic alterations associated with functional dysregulation of the diabetic retina to better understand diabetic retinopathy pathogenesis and that could be used as surrogate endpoints in preclinical drug testing studies.A multi-modal proteomic approach of antibody (Luminex)-, electrophoresis (DIGE)-, and LC-MS (iTRAQ)-based quantitation methods was used to maximize coverage of the retinal proteome. Transcriptomic profiling through microarray analysis was included to identify additional targets and assess potential regulation of protein expression changes at the mRNA level. The proteomic approaches proved complementary, with limited overlap in proteomic coverage. Alterations in pro-inflammatory, signaling and crystallin family proteins were confirmed by orthogonal methods in multiple independent animal cohorts. In an independent experiment, insulin replacement therapy normalized the expression of some proteins (Dbi, Anxa5) while other proteins (Cp, Cryba3, Lgals3, Stat3) were only partially normalized and Fgf2 and Crybb2 expression remained elevated.These results expand the understanding of the changes in retinal protein expression occurring with diabetes and their responsiveness to normalization of blood glucose through insulin therapy. These proteins, especially those not normalized by insulin therapy, may also be useful in preclinical drug development studies

    INVASIVESNET towards an International Association for Open Knowledge on Invasive Alien Species

    Get PDF
    In a world where invasive alien species (IAS) are recognised as one of the major threats to biodiversity, leading scientists from five continents have come together to propose the concept of developing an international association for open knowledge and open data on IAS—termed “INVASIVESNET”. This new association will facilitate greater understanding and improved management of invasive alien species (IAS) and biological invasions globally, by developing a sustainable network of networks for effective knowledge exchange. In addition to their inclusion in the CBD Strategic Plan for Biodiversity, the increasing ecological, social, cultural and economic impacts associated with IAS have driven the development of multiple legal instruments and policies. This increases the need for greater co-ordination, co-operation, and information exchange among scientists, management, the community of practice and the public. INVASIVESNET will be formed by linking new and existing networks of interested stakeholders including international and national expert working groups and initiatives, individual scientists, database managers, thematic open access journals, environmental agencies, practitioners, managers, industry, non-government organisations, citizens and educational bodies. The association will develop technical tools and cyberinfrastructure for the collection, management and dissemination of data and information on IAS; create an effective communication platform for global stakeholders; and promote coordination and collaboration through international meetings, workshops, education, training and outreach. To date, the sustainability of many strategic national and international initiatives on IAS have unfortunately been hampered by time-limited grants or funding cycles. Recognising that IAS initiatives need to be globally coordinated and ongoing, we aim to develop a sustainable knowledge sharing association to connect the outputs of IAS research and to inform the consequential management and societal challenges arising from IAS introductions. INVASIVESNET will provide a dynamic and enduring network of networks to ensure the continuity of connections among the IAS community of practice, science and management
    corecore